Mathematics II Daisuke Oyama May 16, 2025

Homework 7

Due on May 27

1. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,\alpha) = -\frac{1}{4}x^4 - \frac{\alpha}{3}x^3 + \frac{1}{2}x^2 + \alpha x - \frac{1}{4}.$$

Compute the value function $v(\alpha) = \max_{x \in \mathbb{R}} f(x, \alpha), \alpha \in \mathbb{R}$, and draw its graph.

2. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,\alpha) = \begin{cases} -\frac{1}{\alpha^3} x^2 (x - 2\alpha)^2 & \text{if } 2\alpha < x < 0, \\ \frac{1}{\alpha^3} x^2 (x - 2\alpha)^2 & \text{if } 0 < x < 2\alpha, \\ -x^2 (x - 2\alpha)^2 & \text{otherwise.} \end{cases}$$

Compute the value function $v(\alpha) = \max_{x \in \mathbb{R}} f(x, \alpha), \alpha \in \mathbb{R}$, and draw its graph.

3. Let $Y \subset X \subset \mathbb{R}$. For a function $F: X \times X \to \mathbb{R}$ and $\beta \in \mathbb{R}$, suppose that a function $v: X \to \mathbb{R}$ satisfies

$$v(x) = \max_{y \in Y} F(x, y) + \beta v(y)$$

for all $x \in X$. Let $\bar{x} \in \text{Int } X$ and $\bar{y} \in \arg \max_{y \in Y} F(\bar{x}, y) + \beta v(y)$. Assume that (1) $F(\cdot, \bar{y})$ is differentiable at \bar{x} , and (2) v is differentiable at \bar{x} . Under these assumptions, derive the envelope formula:

$$v'(\bar{x}) = \frac{\partial F}{\partial x}(\bar{x}, \bar{y}).$$

4.

(1) Suppose that a real valued function $w \colon \mathbb{R} \to \mathbb{R}$ is concave. Prove that for all $\alpha \in \mathbb{R}$ and $\varepsilon > 0$, we have

$$\frac{w(\alpha) - w(\alpha - \varepsilon)}{\varepsilon} \ge \frac{w(\alpha + \varepsilon) - w(\alpha)}{\varepsilon}.$$

(2) For a function $f : \mathbb{R}^K \times \mathbb{R} \to [-\infty, \infty]$, let the function $v : \mathbb{R} \to [-\infty, \infty]$ be defined by

$$v(\alpha) = \sup_{x \in \mathbb{R}^K} f(x, \alpha).$$

Prove the following:

- (a) If for all $x \in \mathbb{R}^K$, $f(x, \alpha)$ is convex in α , then v is convex.
- (b) If $f(x, \alpha)$ is concave in (x, α) , then v is concave.
- (c) Assume that $X^*(\alpha) = \{x \in \mathbb{R}^K \mid f(x, \alpha) = v(\alpha)\} \neq \emptyset$ for all $\alpha \in \mathbb{R}$, that for all $x \in \mathbb{R}^K$, $f(x, \alpha)$ is differentiable in α , and that v is concave. Then v is differentiable at any $\bar{\alpha} \in \mathbb{R}$ with

$$v'(\bar{\alpha}) = \frac{\partial f}{\partial \alpha}(\bar{x}, \bar{\alpha})$$

for any $\bar{x} \in X^*(\bar{\alpha})$.

5. Let $A = (a_{ij}) \in \mathbb{R}^{N \times N}$ be a (row-)*stochastic matrix*, i.e., $a_{ij} \ge 0$ for all i, j = 1, ..., Nand $\sum_{j=1}^{N} a_{ij} = 1$ for all i = 1, ..., N. A vector $x^* \in \Delta$ is called a *stationary distribution* of A if $(x^*)^{\mathrm{T}}A = (x^*)^{\mathrm{T}}$, where $\Delta = \{x \in \mathbb{R}_+ \mid \sum_{i=1}^{N} x_i = 1\}$.

Show that A has a stationary distribution

- (1) by using the Perron-Frobenius Theorem (Proposition 6.10),
- (2) by using Farkas' Lemma, and
- (3) by using Brouwer's Fixed Point Theorem.

6.

- (1) Find an example of a correspondence $F: X \to X$ such that $X \subset \mathbb{R}^N$ is nonempty, compact, and convex, and F is nonempty- and compact-valued and upper semicontinuous, but not convex-valued, and has no fixed point.
- (2) Find an example of a correspondence $F: X \to X$ such that $X \subset \mathbb{R}^N$ is nonempty, compact, and convex, and F is nonempty- and convex-valued and upper semicontinuous, but not compact-valued, and has no fixed point.

7. Let $X \subset \mathbb{R}^N$, and let $\{f^m\}_{m=1}^{\infty}$ be a sequence of bounded and continuous functions $f^m \colon X \to \mathbb{R}$ (i.e., for each m, f^m is continuous, and there exists some $r^m \in \mathbb{R}$ such that $|f^m(x)| < r^m$ for all $x \in X$). Assume that $\{f^m\}_{m=1}^{\infty}$ satisfies the following property:

For any $\varepsilon > 0$, there exists M such that $\sup_{x \in X} |f^m(x) - f^n(x)| < \varepsilon$ for all $m, n \ge M$.

- (1) Show that for each $x \in X$, the sequence $\{f^m(x)\}_{m=1}^{\infty}$ of real numbers is a Cauchy sequence.
- (2) By the above and the completeness of \mathbb{R} , for each $x \in X$, $\{f^m(x)\}_{m=1}^{\infty}$ is convergent; denote its limit by $f(x) \in \mathbb{R}$.

Show that the function $f: X \to \mathbb{R}$ is bounded.

(You may (but do not have to) follow the following approach:

- Let $M_1 \in \mathbb{N}$ be such that for all $x \in X$, $|f^m(x) f^n(x)| < 1$ for all $m, n \ge M_1$.
- For each $x \in X$, let $m(x) \in \mathbb{N}$ be such that $m(x) \ge M_1$ and $|f^{m(x)}(x) f(x)| < 1$.
- Let $r = r^{M_1} + 2$ (where $r^{M_1} \in \mathbb{R}$ is such that $|f^{M_1}(x)| < r^{M_1}$ for all $x \in X$).

Then show that for all $x \in X$, |f(x)| < r (by triangular inequality).)

- (3) Show that $\sup_{x \in X} |f^m(x) f(x)| \to 0$ as $m \to \infty$.
- (4) Show that f is continuous.