3. Correspondences

Daisuke Oyama

Mathematics II

April 15, 2025

Correspondences

Let X and Y be nonempty subsets of \mathbb{R}^N and \mathbb{R}^K , respectively.

• A correspondence $F: X \to Y$ is a rule that assigns a set $F(x) \subset Y$ to every $x \in X$.

• " $F: X \to Y$ ", " $F: X \rightrightarrows Y$ ", and " $F: X \Rightarrow Y$ " are also used.

- *F* is *nonempty-valued* if $F(x) \neq \emptyset$ for all $x \in X$.
 - In Debreu, a correspondence is defined to be a nonempty-valued correspondence.
- F is compact-valued if F(x) is compact for all $x \in X$.
- F is convex-valued if F(x) is convex for all $x \in X$.
- F is closed-valued if F(x) is closed (relative to Y) for all $x \in X$.
- F is singleton-valued if F(x) is a singleton set for all $x \in X$.

The graph of F is the set

 $\operatorname{Graph}(F) = \{(x, y) \in X \times Y \mid y \in F(x)\}.$

F is locally bounded (or uniformly bounded) near x ∈ X if there exists ε > 0 such that F(B_ε(x) ∩ X) is bounded. F is locally bounded if for all x ∈ X, it is locally bounded near x.

▶ $F(A) = \{y \in Y \mid y \in F(x) \text{ for some } x \in A\} = \bigcup_{x \in A} F(x)$... the *image* of A under F.

Examples

• Define
$$B \colon \mathbb{R}^N_{++} \times \mathbb{R}_{++} \to \mathbb{R}^N_+$$
 by
$$B(p, w) = \{ x \in \mathbb{R}^N_+ \mid p \cdot x \le w \}.$$

 ${\boldsymbol{B}}$ is a nonempty- and compact-valued correspondence.

▶ Given a function $u: \mathbb{R}^N_+ \to \mathbb{R}$, define the correspondence $x: \mathbb{R}^N_{++} \times \mathbb{R}_{++} \to \mathbb{R}^N_+$ by

$$\begin{aligned} x(p,w) &= \{x \in \mathbb{R}^N_+ \mid x \in B(p,w) \text{ and} \\ &\quad u(x) \geq u(y) \text{ for all } y \in B(p,w) \} \end{aligned}$$

(the Walrasian demand correspondence).

If u is continuous, then x is

- nonempty-valued by the Extreme Value Theorem, and
- compact-valued. —Why?

Continuous Correspondences: Notice

Terminology:

We use "upper/lower semi-continuous" instead of "upper/lower hemi-continuous".

Definition:

We adopt general definitions using open sets.

- For lower semi-continuity, our definition is equivalent to that in MWG.
- For upper semi-continuity, under some additional assumption our definition is equivalent to that in MWG.

Continuous Functions: Review

- For a *function* $f: X \to Y$, the following conditions are equivalent:
 - 1. For any open neighborhood V of $f(\bar{x})$ (relative to Y), there exists an open neighborhood U of \bar{x} (relative to X) such that $f(U) \subset V$.
 - 2. For any sequence $\{x^m\} \subset X$ such that $x^m \to \bar{x}$ as $m \to \infty$, we have $f(x^m) \to f(\bar{x})$ as $m \to \infty$.

For correspondences, these are no longer equivalent.

- 1. Condition 1 will be used to define *upper semi-continuity*.
- 2. (A generalized version of) Condition 2 will be equivalent to *lower semi-continuity*.

- 1. An upper semi-continuous correspondence
 - may have a "downward jump", but
 - may not have an "upward jump".
 - 2. A lower semi-continuous correspondence
 - may have an "upward jump", but
 - may not have a "downward jump".

Upper Semi-Continuity

Let X and Y be nonempty subsets of \mathbb{R}^N and \mathbb{R}^K , respectively.

Definition 3.1

• A correspondence $F \colon X \to Y$ is upper semi-continuous at $\bar{x} \in X$ if

for any open neighborhood V of $F(\bar{x})$ (relative to Y), there exists an open neighborhood U of \bar{x} (relative to X) such that $F(U) \subset V$.

- For $A \subset X$, $F: X \to Y$ is upper semi-continuous on A if it is upper semi-continuous at all $\bar{x} \in A$.
- F: X → Y is upper semi-continuous if it is upper semi-continuous on X.

•
$$F(U) = \{y \in Y \mid y \in F(x) \text{ for some } x \in U\}$$

 \cdots the *image* of U under F.

Constant Correspondences

Any correspondence F with F(x) = F(x') for all $x, x' \in X$ is upper semi-continuous according to our definition.

Upper Semi-Continuity + Compact-Valuedness

Proposition 3.1

 $F: X \to Y$ is upper semi-continuous at \bar{x} and $F(\bar{x})$ is compact if and only if for any sequence $\{x^m\} \subset X$ such that $x^m \to \bar{x}$, any sequence $\{y^m\} \subset Y$ such that $y^m \in F(x^m)$ for all $m \in \mathbb{N}$ has a convergent subsequence whose limit is in $F(\bar{x})$.

Proposition 3.2

If $F: X \to Y$ is upper semi-continuous and compact-valued, then F(A) is compact for any compact set $A \subset X$.

•
$$F(A) = \{y \in Y \mid y \in F(x) \text{ for some } x \in A\}$$

 \cdots the *image* of A under F.

Proof of Proposition 3.1

"Only if" part:

Assume the contrary, i.e., that there exist $\{x^m\} \subset X$ with $x^m \to \bar{x}$ and $\{y^m\} \subset Y$ with $y^m \in F(x^m)$ for all m such that for any $z \in F(\bar{x})$, no subsequence of $\{y^m\}$ converges to z.

- ▶ Then for each $z \in F(\bar{x})$, there exists $\varepsilon(z) > 0$ such that $\{m \in \mathbb{N} \mid y^m \in B_{\varepsilon(z)}(z)\}$ is a finite set.
- ▶ By the compactness of $F(\bar{x})$, there are finitely many points $z^1, \ldots, z^K \in F(\bar{x})$ such that $F(\bar{x}) \subset \bigcup_{k=1}^K B_{\varepsilon(z^k)}(z^k)$ (Proposition 2.12).
- ▶ By the upper semi-continuity of F at \bar{x} , there exists an open neighborhood U of \bar{x} such that $F(U) \subset \bigcup_{k=1}^{K} B_{\varepsilon(z^k)}(z^k)$.

- ▶ By $x^m \to \bar{x}$, there exists M such that $x^m \in U$ for all $m \ge M$, and hence $y^m \in \bigcup_{k=1}^K B_{\varepsilon(z^k)}(z^k)$ for all $m \ge M$.
- ▶ But this contradicts the finiteness of $\{m \in \mathbb{N} \mid y^m \in B_{\varepsilon(z^k)}(z^k)\}$ for all $k = 1, \dots, K$.

"If" part:

Compactness of $F(\bar{x})$ is immediate.

- ▶ If *F* is not upper semi-continuous at \bar{x} , then there exists an open neighborhood *V* of $F(\bar{x})$ such that for each *m*, there exists x^m and y^m such that $x^m \in B_{\frac{1}{m}}(\bar{x})$, $y^m \in F(x^m)$, and $y^m \notin V$.
- ▶ Then $x^m \to \bar{x}$, while no subsequence of $\{y^m\}$ can converge to a point in $F(\bar{x})$.

Closed Graph

Definition 3.2

 $F \colon X \to Y$ has a closed graph if its graph,

 $\mathrm{Graph}(F) = \{(x,y) \in X \times Y \mid y \in F(x)\},\$

is closed (relative to $X \times Y$).

Definition 3.3

•
$$F: X \to Y$$
 is closed at \bar{x} if

$$\begin{split} x^m \to \bar{x}, \ y^m \in F(x^m) \text{ for all } m \in \mathbb{N}, \text{ and } y^m \to y \\ \Rightarrow y \in F(\bar{x}). \end{split}$$

• $F: X \to Y$ is closed if it is closed at all $\bar{x} \in X$.

Proposition 3.3

 $F \colon X \to Y$ has a closed graph if and only if it is closed.

Upper Semi-Continuity + Closed-Valuedness

Proposition 3.4

If F is upper semi-continuous and closed-valued, then it has a closed graph.

- ▶ Let $y^m \in F(x^m)$ for all $m \in \mathbb{N}$ and $(x^m, y^m) \to (\bar{x}, \bar{y}) \in X \times Y.$
- Take any $\varepsilon > 0$.
- ▶ $B_{\varepsilon}(F(\bar{x}))$ being an open neighborhood of $F(\bar{x})$, there exists an open neighborhood U of \bar{x} such that $F(U) \subset B_{\varepsilon}(F(\bar{x}))$ by the upper semi-continuity of F at \bar{x} .
- Since $x^m \to \bar{x}$, there exists M such that for all $m \ge M$, $x^m \in U$ and hence $y^m \in F(U) \subset B_{\varepsilon}(F(\bar{x}))$. Therefore, we have $\bar{y} \in \bar{B}_{\varepsilon}(F(\bar{x}))$.
- Since $\varepsilon > 0$ has been taken arbitrarily and since $F(\bar{x})$ is closed, we have $\bar{y} \in F(\bar{x})$ (by Proposition 2.9).

Upper Semi-Continuity + Compact-Valuedness

Proposition 3.5

For correspondences $F: X \to Y$ and $G: X \to Y$, define the correspondence $F \cap G: X \to Y$ by $(F \cap G)(x) = F(x) \cap G(x)$ for all $x \in X$. If

1. F has a closed graph, and

2. *G* is upper semi-continuous and compact-valued, then $F \cap G$ is upper semi-continuous and compact-valued.

▶ Take any $\bar{x} \in X$, and consider any sequence $\{x^m\} \subset X$ such that $x^m \to \bar{x}$.

Let $\{y^m\}$ be any sequence such that $y^m \in (F \cap G)(x^m) = F(x^m) \cap G(x^m)$ for all m.

Since $y^m \in G(x^m)$ for all m, and by the upper semi-continuity of G at \bar{x} and the compactness of $G(\bar{x})$, there exist a subsequence $\{y^{m(k)}\}$ and $\bar{y} \in G(\bar{x})$ such that $y^{m(k)} \to \bar{y}$.

Since
$$y^m \in F(x^m)$$
 for all m ,
we thus have a sequence $\{(x^{m(k)}, y^{m(k)})\} \subset \operatorname{Graph}(F)$ that
converges to (\bar{x}, \bar{y}) .

By the closedness of Graph(F), we have $(\bar{x}, \bar{y}) \in \text{Graph}(F)$, i.e., $\bar{y} \in F(\bar{x})$.

• Hence, we have $\bar{y} \in (F \cap G)(\bar{x})$.

The conclusion therefore follows from Proposition 3.1.

Upper Semi-Continuity + Compact-Valuedness

Proposition 3.6

For a correspondence $F \colon X \to Y$, consider the following conditions:

- 1. F is upper semi-continuous and compact-valued.
- 2. F has a closed graph and the images of compact sets are compact.
- 3. F has a closed graph and the images of compact sets are bounded.
- 4. F has a closed graph and is locally bounded.

We have the following:

 $\blacktriangleright 1 \Leftrightarrow 2 \Rightarrow 3 \Leftrightarrow 4.$

• If Y is closed, $3 \Rightarrow 2$ (hence these conditions are equivalent).

Thus, if Y is closed, then our definition is equivalent to that in MWG (condition 3) for compact-valued correspondences.

 $\blacktriangleright 1 \Rightarrow 2:$

By Propositions 3.2 and 3.4.

 $\blacktriangleright 2 \Rightarrow 1:$

Take any sequence $\{x^m\} \subset X$ such that $x^m \to \overline{x} \in X$ and any sequence $\{y^m\} \subset Y$ such that $y^m \in F(x^m)$ for all $m \in \mathbb{N}$.

Since $A = \{x^m \mid m \in \mathbb{N}\} \cup \{\bar{x}\}$ is compact, $\{y^m\} \subset F(A)$ has a convergent subsequence with a limit $\bar{y} \in F(A)$ by the compactness of F(A), where $\bar{y} \in F(\bar{x})$ by the closedness of the graph.

Therefore, the conclusion follows by Proposition 3.1.

$$\blacktriangleright$$
 2 \Rightarrow 3:

Immediate.

► 3 \Rightarrow 4:

Suppose that F is not locally bounded, i.e., there exists some $\bar{x} \in X$ such that $F(B_{\varepsilon}(\bar{x}) \cap X)$ is not bounded for every $\varepsilon > 0$.

For each $m \in \mathbb{N}$, let $y^m \in F(B_{1/m}(\bar{x}) \cap X)$ be such that $\|y^m\| > m$, and let $x^m \in B_{1/m}(\bar{x}) \cap X$ be such that $y^m \in F(x^m)$.

By construction, $x^m \to \bar{x}$.

Thus we have found a compact set $\{x^m \mid m \in \mathbb{N}\} \cup \{\bar{x}\}$ whose image is not bounded.

• $4 \Rightarrow 3$:

Suppose that there exists a compact set $A \subset X$ such that F(A) is not bounded.

For each $m \in \mathbb{N}$, let $y^m \in F(A)$ be such that $||y^m|| > m$, and let $x^m \in A$ be such that $y^m \in F(x^m)$.

By the compactness of A, $\{x^m\}$ has a convergent subsequence $\{x^{m(k)}\}$ with a limit $\bar{x} \in A$.

For any $\varepsilon > 0$, $F(B_{\varepsilon}(\bar{x}) \cap X)$ contains $\{y^{m(k)}\}_{k \geq K}$ for some K, which is unbounded.

• $3 \Rightarrow 2$ under the closedness of Y:

Let $A \subset X$ be a compact set.

Take any $\{y^m\} \subset F(A)$, and let $\{x^m\} \subset A$ be such that $y^m \in F(x^m)$ for all $m \in \mathbb{N}$.

By the compactness of A and the boundedness of F(A), $\{(x^m,y^m)\}$ has a convergent subsequence $\{(x^{m(k)},y^{m(k)})\}$ with a limit $(\bar{x},\bar{y})\in A\times\mathbb{R}^K$.

By the closedness of Y, $\bar{y} \in Y$, and therefore, by the closedness of the graph of F, $\bar{y} \in F(\bar{x}) \subset F(A)$.

This implies that F(A) is compact.

Upper Semi-Continuity + Compact-Valuedness

Corollary 3.7

Suppose that Y is compact. $F: X \rightarrow Y$ is upper semi-continuous and compact-valued if and only if it has a closed graph.

Thus, if Y is compact, then our definition is equivalent to that in Debreu for compact-valued correspondences.

Lower Semi-Continuity

Let X and Y be nonempty subsets of \mathbb{R}^N and \mathbb{R}^K , respectively.

Definition 3.4

A correspondence $F: X \to Y$ is lower semi-continuous at $\bar{x} \in X$ if for any open set V (relative to Y) such that $F(\bar{x}) \cap V \neq \emptyset$,

there exists an open neighborhood U (relative to X) of \bar{x} such that $F(z) \cap V \neq \emptyset$ for all $z \in U$.

- For A ⊂ X, F: X → Y is lower semi-continuous on A if it is lower semi-continuous at all x̄ ∈ A.
- F: X → Y is lower semi-continuous if it is lower semi-continuous on X.

Lower Semi-Continuity

Proposition 3.8

For a correspondence $F: X \to Y$, the following statements are equivalent:

- 1. F is lower semi-continuous at \bar{x} .
- 2. For any sequence $\{x^m\} \subset X$ with $x^m \to \overline{x}$ and any $y \in F(\overline{x})$, there exist a subsequence $\{x^{m(k)}\}$ of $\{x^m\}$ and a sequence $\{y^k\} \subset Y$ such that $y^k \in F(x^{m(k)})$ for all $k \in \mathbb{N}$ and $y^k \to y$.
- 3. For any sequence $\{x^m\} \subset X$ with $x^m \to \overline{x}$ and any $y \in F(\overline{x})$, there exist a sequence $\{y^m\} \subset Y$ and $M \in \mathbb{N}$ such that $y^m \in F(x^m)$ for all $m \ge M$ and $y^m \to y$.

Lower Semi-Continuity

- ► Thus, our definition is equivalent to that in MWG.
- If F is nonempty-valued, then the proposition holds with M = 1.

Thus, our definition is equivalent to that in Debreu for nonempty-valued correspondences.

Continuity

Let X and Y be nonempty subsets of \mathbb{R}^N and \mathbb{R}^K , respectively. Definition 3.5

- A correspondence F: X → Y is continuous at x̄ ∈ X if it is both upper and lower semi-continuous at x̄.
- For $A \subset X$, $F: X \to Y$ is continuous on A if it is continuous at all $\bar{x} \in A$.
- $F: X \to Y$ is continuous if it is continuous on X.

Example

Let X and A be nonempty subsets of \mathbb{R}^N and \mathbb{R}^K , respectively. Given a function $f: X \times A \to \mathbb{R}$, define the correspondence $F: A \to X$ by $F(\alpha) = \{x \in X \mid f(x, \alpha) \ge 0\}.$

Proposition 3.9

If f is upper semi-continuous, then F has a closed graph.

Proposition 3.10

lf

▶ for each $x \in X$, $f(x, \alpha)$ is lower semi-continuous in α , and

for each α ∈ A, for any x ∈ X such that f(x, α) ≥ 0, and for any ε > 0, there exists x' ∈ B_ε(x) ∩ X such that f(x', α) > 0, then F is lower semi-continuous.

Example

• The correspondence $B : \mathbb{R}^N_{++} \times \mathbb{R}_{++} \to \mathbb{R}^N_+$ defined by $B(p, w) = \{x \in \mathbb{R}^N_+ \mid p \cdot x \leq w\}.$

is continuous.

Example

For a function $u \colon \mathbb{R}^N_+ \to \mathbb{R}$, define the correspondence $V \colon \mathbb{R} \to \mathbb{R}^N_+$ by

$$V(t) = \{ x \in \mathbb{R}^N_+ \mid u(x) \ge t \}.$$

- If u is upper semi-continuous, then V has a closed graph (but may not be upper semi-continuous in general).
- ▶ If *u* is locally insatiable, then *V* is lower semi-continuous.

Singleton Values

For a correspondence $F: X \to Y$ and a function $f: X \to Y$, f is a *selection* of F if $f(x) \in F(x)$ for all $x \in X$.

Proposition 3.11

For a correspondence $F\colon X\to Y,$ suppose that $F(\bar{x})$ is a singleton set.

- If F is upper semi-continuous at x
 , then any selection of F is continuous at x
 .
- If there exists a selection continuous at x
 , then F is lower semi-continuous at x.

Proposition 3.12

For a function $f: X \to Y$, define the correspondence $F: X \to Y$ by $F(x) = \{f(x)\}$ for all $x \in X$.

▶ If f is continuous, then F is upper semi-continuous.

▶ If *F* is lower semi-continuous, then *f* is continuous.

Parametric Constrained Optimization

Let X and A be nonempty subsets of \mathbb{R}^N and \mathbb{R}^K , respectively.

For a function $f: X \times A \to \mathbb{R}$ and a nonempty-valued correspondence $\Gamma: A \to X$, consider the maximization problem

$$\max_{x} f(x, \alpha) \qquad \text{s.t. } x \in \Gamma(\alpha).$$

- ▶ If f is continuous and Γ is compact-valued, then by the Extreme Value Theorem, a solution exists $\forall \alpha \in A$.
- ▶ I.e., the value function $v(\alpha) = \max_{x \in \Gamma(\alpha)} f(x, \alpha)$ is well defined, and the argmax correspondence $X^*(\alpha) = \arg\max_{x \in \Gamma(\alpha)} f(x, \alpha)$ is nonempty-valued (and in fact also compact-valued).
- ▶ What are the continuity properties of v and X*?

Theorem of the Maximum

Let X and A be nonempty subsets of \mathbb{R}^N and \mathbb{R}^K , respectively. For a function $f: X \times A \to \mathbb{R}$ and a correspondence $\Gamma: A \to X$, define the function $v: A \to [-\infty, \infty]$ by

$$v(\alpha) = \sup_{x \in \Gamma(\alpha)} f(x, \alpha)$$

(let
$$v(\alpha) = -\infty$$
 if $\Gamma(\alpha) = \emptyset$).

Proposition 3.13

If Γ is lower semi-continuous and f is lower semi-continuous, then v is lower semi-continuous.

Proposition 3.14

If Γ is nonempty- and compact-valued and upper semi-continuous and f is upper semi-continuous, then v is upper semi-continuous.

Proof of Proposition 3.13

Fix any c ∈ ℝ. We want to show that {α ∈ A | v(α) ≤ c} is closed.

Suppose that v(α^m) ≤ c and α^m → ā ∈ A. We want to show that f(x, ā) ≤ c for all x ∈ Γ(ā).

Take any
$$x \in \Gamma(\bar{\alpha})$$
.

By the lower semi-continuity of Γ at $\bar{\alpha}$, we have a sequence $\{x^m\} \subset X$ such that $x^m \in \Gamma(\alpha^m)$ (for large m) and $x^m \to x$.

► Then $f(x^m, \alpha^m) \le v(\alpha^m) \le c$, but by the lower semi-continuity of f, we have $f(x, \bar{\alpha}) \le c$.

Proof of Proposition 3.14

Fix any $c \in \mathbb{R}$.

We want to show that $\{\alpha \in A \mid v(\alpha) \ge c\}$ is closed.

- Suppose that $v(\alpha^m) \ge c$ and $\alpha^m \to \bar{\alpha} \in A$. We want to show that $f(x, \bar{\alpha}) \ge c$ for some $x \in \Gamma(\bar{\alpha})$.
- For each m, by the nonemptiness and compactness of Γ(α^m) and the upper semi-continuity of f(x, α^m) in x, we can take an x^m ∈ Γ(α^m) such that f(x^m, α^m) = v(α^m) ≥ c.
- ▶ By the upper semi-continuity of Γ at $\bar{\alpha}$ and the compactness of $\Gamma(\bar{\alpha})$, there exist a subsequence $\{x^{m(k)}\}$ of $\{x^m\}$ and $\bar{x} \in \Gamma(\bar{\alpha})$ such that $x^{m(k)} \to \bar{x}$.
- By the upper semi-continuity of f, we have $f(\bar{x}, \bar{\alpha}) \ge c$.

Theorem of the Maximum

Define the correspondence $X^* \colon A \to X$ by

$$X^*(\alpha) = \{ x \in X \mid x \in \Gamma(\alpha) \text{ and } f(x,\alpha) = v(\alpha) \}.$$

Proposition 3.15

Suppose that

- Γ is nonempty- and compact-valued and continuous, and
- f is continuous.

Then

- 1. X^* is nonempty- and compact-valued,
- 2. v is continuous, and
- 3. X^* is upper semi-continuous.

Proof of Proposition 3.15

- 1. By the Extreme Value Theorem.
- 2. By Propositions 3.13 and 3.14.
- The correspondence X̂(α) = {x ∈ X | f(x, α) = v(α)} has a closed graph by the continuity of f and v.
 Therefore, X* (= X̂ ∩ Γ) is upper semi-continuous by Proposition 3.5.

$\begin{array}{ll} \textbf{Utility Maximization}\\ \textbf{For } p \in \mathbb{R}^N_{++} \text{ and } w \in \mathbb{R}_{++},\\ & \max_{x \in \mathbb{R}^N_+} & u(x)\\ & \text{ s.t. } p \cdot x \leq w. \end{array}$

- Indirect utility function · · · optimal value function: the function v: ℝ^N₊₊ × ℝ₊₊ → (-∞, ∞] defined by v(p, w) = sup{u(x) | x ∈ B(p, w)}.
- Walrasian demand correspondence · · · optimal solution correspondence: the correspondence x: ℝ^N₊₊ × ℝ₊₊ → ℝ^N₊ defined by x(p,w) = {x* ∈ ℝ^N₊ | x* ∈ B(p,w) and u(x*) ≥ u(x) for all x ∈ B(p,w)}.

Proposition 3.16

Assume that u is continuous.

Then v is continuous, and x is nonempty- and compact-valued and upper semi-continuous.

Proof

Since B is nonempty- and compact-valued and continuous, the claim follows from the Theorem of the Maximum.

Expenditure Minimization

Write $\bar{v} = \sup u(\mathbb{R}^N_+)$, and assume $u(0) < \bar{v}$. For $p \in \mathbb{R}^N_{++}$ and $t \in [u(0), \bar{v})$, $\min_{\substack{x \in \mathbb{R}^N_+ \\ \text{s.t.}}} p \cdot x$ s.t. $u(x) \ge t$.

- Expenditure function \cdots optimal value function: the function $e \colon \mathbb{R}^N_{++} \times [u(0), \bar{v}) \to \mathbb{R}$ defined by $e(p, t) = \inf\{p \cdot x \mid u(x) \ge t\}.$
- Hicksian demand correspondence · · · optimal solution correspondence:

the correspondence $h\colon \mathbb{R}^N_{++}\times [u(0),\bar{v})\to \mathbb{R}^N_+$ defined by

$$\begin{split} h(p,t) &= \{x^* \in \mathbb{R}^N_+ \mid u(x^*) \geq t \text{ and} \\ p \cdot x^* \leq p \cdot x \text{ for all } x \in \mathbb{R}^N_+ \text{ such that } u(x) \geq t\}. \end{split}$$

Proposition 3.17

Assume that u is upper semi-continuous.

- 1. $p \mapsto e(p,t)$ is continuous, and $p \mapsto h(p,t)$ is nonempty- and compact-valued and upper semi-continuous.
- 2. *e* is lower semi-continuous.
- 3. If *u* is locally insatiable, then *e* is continuous, and *h* is nonempty- and compact-valued and upper semi-continuous.

- The objective function p ⋅ x is continuous in (x, p).
 Let V(t) = {x ∈ ℝ^N₊ | u(x) ≥ t} (not bounded in general).
 2, 3.
 - Fix any $(\bar{p}, \bar{t}) \in \mathbb{R}^N_{++} \times [u(0), \bar{v}).$
 - Since $\bar{t} < \bar{v} = \sup u(\mathbb{R}^N_+)$, there exists some $x^0 \in \mathbb{R}^N_+$ such that $u(x^0) > \bar{t}$.

• Let
$$U^0 = [u(0), u(x^0)) \ (\neq \emptyset).$$

For $t \in U^0$, define $V^0(t) = V(t) \cap \{x \in \mathbb{R}^N_+ \mid \overline{p} \cdot x \leq \overline{p} \cdot x^0 + 1\}.$

For all $t \in U^0$, $V^0(t) \neq \emptyset$ since $x^0 \in V^0(t)$.

• Since $\{x \in \mathbb{R}^N_+ \mid \bar{p} \cdot x \leq \bar{p} \cdot x^0 + 1\}$ is a neighborhood of $\{x \in \mathbb{R}^N_+ \mid \bar{p} \cdot x \leq \bar{p} \cdot x^0\}$ and $p \mapsto \{x \in \mathbb{R}^N_+ \mid p \cdot x \leq p \cdot x^0\}$ is upper semi-continuous,

we can take an open neighborhood $P^0 \subset \mathbb{R}^N_{++}$ of \bar{p} such that $\{x \in \mathbb{R}^N_+ \mid p \cdot x \leq p \cdot x^0\} \subset \{x \in \mathbb{R}^N_+ \mid \bar{p} \cdot x \leq \bar{p} \cdot x^0 + 1\}$ for all $p \in P^0$.

$$\label{eq:production} \mbox{ by construction, for all } (p,t) \in P^0 \times U^0, \\ -e(p,t) = \sup\{-(p\cdot x) \mid x \in V^0(t)\} \mbox{ and } \\ h(p,t) = \{x \in \mathbb{R}^N_+ \mid x \in V^0(t) \mbox{ and } p \cdot x = e(p,t)\}.$$

▶ $(p,t) \mapsto V^0(t)$ has a closed graph by the upper semi-continuity of u, and $V^0(t)$ is contained in the compact set $\{x \in \mathbb{R}^N_+ \mid \bar{p} \cdot x \leq \bar{p} \cdot x^0 + 1\}$ for all $(p,t) \in P^0 \times U^0$.

Therefore, by Corollary 3.7, $(p,t) \mapsto V^0(t)$ is upper semi-continuous and compact-valued.

• Thus by Proposition 3.14, -e is upper semi-continuous.

- $(p,t) \mapsto V(t)$ is lower semi-continuous if u is locally insatiable. Thus by Proposition 3.13, -e is lower semi-continuous.
- The upper semi-continuity of h follows as in the proof of the Theorem of the Maximum.

1.

- With fixed \bar{t} , $p \mapsto V^0(\bar{t})$ is continuous (and compact-valued).
- ► Thus by the Theorem of the Maximum, p → h(p, t̄) is nonempty- and compact-valued and upper semi-continuous on P⁰, and p → -e(p, t̄) is continuous on P⁰.

Profit Maximization For $Y \subset \mathbb{R}^N$ with $Y \neq \emptyset$ and for $p \in \mathbb{R}^N_{++}$,

$$\begin{array}{ll} \max_{y \in \mathbb{R}^N} & p \cdot y \\ \text{s.t.} & y \in Y. \end{array}$$

▶ Profit function \cdots optimal value function: the function $\pi \colon \mathbb{R}^N_{++} \to (-\infty, \infty]$ defined by

 $\pi(p) = \sup\{p \cdot y \mid y \in Y\}.$

Supply correspondence \cdots optimal solution correspondence: the correspondence $S \colon \mathbb{R}^N_{++} \to \mathbb{R}^N$ defined by

$$S(p) = \{y^* \in \mathbb{R}^N \mid y^* \in Y \text{ and } p \cdot y^* \ge p \cdot y \text{ for all } y \in Y\}.$$

Proposition 3.18

Suppose that Y is nonempty, closed, and convex. If $S(\bar{p})$ is nonempty and bounded, then there exists an open neighborhood $P^0 \subset \mathbb{R}^N_{++}$ of \bar{p} such that

- 1. $S(p) \neq \emptyset$ for all $p \in P^0$ and $\bigcup_{p \in P^0} S(p)$ is bounded,
- 2. S is upper semi-continuous on P^0 , and
- 3. π is continuous on P^0 .

- By the closedness and convexity of Y ≠ Ø, the continuity of p ⋅ y in (y, p), and the linearity of p ⋅ y in y, there exists an open neighborhood P⁰ ⊂ ℝ^N₊₊ of p̄ such that S(p) ≠ Ø for all p ∈ P⁰ and U_{p∈P⁰} S(p) is bounded.
 (See Lemma A.4 in Oyama and Takenawa (2018).)
- For such P^0 , let $Y^0 = \operatorname{Cl} \bigcup_{p \in P^0} S(p)$, which is nonempty and compact.
- ► Then, for $p \in P^0$, we have $\pi(p) = \max\{p \cdot y \mid y \in Y^0\}$ and $S(p) = \arg \max\{p \cdot y \mid y \in Y^0\}.$
- Therefore, by the compactness of Y⁰ and the continuity of p · y in (y, p), the Theorem of the Maximum applies.