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Correspondences

Let X and Y be nonempty subsets of RN and RK , respectively.

▶ A correspondence F : X → Y is a rule that assigns a set
F (x) ⊂ Y to every x ∈ X.

▶ “F : X →→ Y ”, “F : X ⇒ Y ”, and “F : X ⇒ Y ” are also used.

▶ F is nonempty-valued if F (x) 6= ∅ for all x ∈ X.

▶ In Debreu, a correspondence is defined to be a nonempty-valued

correspondence.

▶ F is compact-valued if F (x) is compact for all x ∈ X.

▶ F is convex-valued if F (x) is convex for all x ∈ X.

▶ F is closed-valued if F (x) is closed (relative to Y )
for all x ∈ X.

▶ F is singleton-valued if F (x) is a singleton set for all x ∈ X.
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▶ The graph of F is the set

Graph(F ) = {(x, y) ∈ X × Y | y ∈ F (x)}.

▶ F is locally bounded (or uniformly bounded) near x ∈ X if
there exists ε > 0 such that F (Bε(x) ∩X) is bounded.

F is locally bounded if for all x ∈ X, it is locally bounded
near x.

▶ F (A) = {y ∈ Y | y ∈ F (x) for some x ∈ A} =
∪

x∈A F (x)

· · · the image of A under F .
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Examples

▶ Define B : RN
++ × R++ → RN

+ by

B(p, w) = {x ∈ RN
+ | p · x ≤ w}.

B is a nonempty- and compact-valued correspondence.

▶ Given a function u : RN
+ → R,

define the correspondence x : RN
++ × R++ → RN

+ by

x(p, w) = {x ∈ RN
+ | x ∈ B(p, w) and

u(x) ≥ u(y) for all y ∈ B(p, w)}

(the Walrasian demand correspondence).

If u is continuous, then x is

▶ nonempty-valued by the Extreme Value Theorem, and

▶ compact-valued. —Why?
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Continuous Correspondences: Notice

▶ Terminology:
We use “upper/lower semi-continuous”
instead of “upper/lower hemi-continuous”.

▶ Definition:
We adopt general definitions using open sets.

▶ For lower semi-continuity,
our definition is equivalent to that in MWG.

▶ For upper semi-continuity, under some additional assumption
our definition is equivalent to that in MWG.
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Continuous Functions: Review

▶ For a function f : X → Y , the following conditions are
equivalent:

1. For any open neighborhood V of f(x̄) (relative to Y ),
there exists an open neighborhood U of x̄ (relative to X)
such that f(U) ⊂ V .

2. For any sequence {xm} ⊂ X such that xm → x̄ as m → ∞,
we have f(xm) → f(x̄) as m → ∞.

▶ For correspondences, these are no longer equivalent.

1. Condition 1 will be used to define upper semi-continuity.

2. (A generalized version of) Condition 2 will be equivalent to
lower semi-continuity.
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▶ 1. An upper semi-continuous correspondence

▶ may have a “downward jump”, but

▶ may not have an “upward jump”.

2. A lower semi-continuous correspondence

▶ may have an “upward jump”, but

▶ may not have a “downward jump”.
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Upper Semi-Continuity
Let X and Y be nonempty subsets of RN and RK , respectively.

Definition 3.1
▶ A correspondence F : X → Y is upper semi-continuous at

x̄ ∈ X if
for any open neighborhood V of F (x̄) (relative to Y ),
there exists an open neighborhood U of x̄ (relative to X)
such that F (U) ⊂ V .

▶ For A ⊂ X, F : X → Y is upper semi-continuous on A if
it is upper semi-continuous at all x̄ ∈ A.

▶ F : X → Y is upper semi-continuous if
it is upper semi-continuous on X.

▶ F (U) = {y ∈ Y | y ∈ F (x) for some x ∈ U}
· · · the image of U under F .
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Constant Correspondences

▶ Any correspondence F with F (x) = F (x′) for all x, x′ ∈ X
is upper semi-continuous according to our definition.
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Upper Semi-Continuity + Compact-Valuedness

Proposition 3.1

F : X → Y is upper semi-continuous at x̄ and F (x̄) is compact
if and only if
for any sequence {xm} ⊂ X such that xm → x̄,
any sequence {ym} ⊂ Y such that ym ∈ F (xm) for all m ∈ N has
a convergent subsequence whose limit is in F (x̄).

Proposition 3.2

If F : X → Y is upper semi-continuous and compact-valued,
then F (A) is compact for any compact set A ⊂ X.

▶ F (A) = {y ∈ Y | y ∈ F (x) for some x ∈ A}
· · · the image of A under F .
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Proof of Proposition 3.1

▶ “Only if” part:

Assume the contrary, i.e., that there exist {xm} ⊂ X with
xm → x̄ and {ym} ⊂ Y with ym ∈ F (xm) for all m such that
for any z ∈ F (x̄), no subsequence of {ym} converges to z.

▶ Then for each z ∈ F (x̄), there exists ε(z) > 0 such that
{m ∈ N | ym ∈ Bε(z)(z)} is a finite set.

▶ By the compactness of F (x̄), there are finitely many points
z1, . . . , zK ∈ F (x̄) such that F (x̄) ⊂

∪K
k=1Bε(zk)(z

k)
(Proposition 2.12).

▶ By the upper semi-continuity of F at x̄, there exists an open
neighborhood U of x̄ such that F (U) ⊂

∪K
k=1Bε(zk)(z

k).
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▶ By xm → x̄, there exists M such that xm ∈ U for all m ≥ M ,
and hence ym ∈

∪K
k=1Bε(zk)(z

k) for all m ≥ M .

▶ But this contradicts the finiteness of
{m ∈ N | ym ∈ Bε(zk)(z

k)} for all k = 1, . . . ,K.
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▶ “If” part:

Compactness of F (x̄) is immediate.

▶ If F is not upper semi-continuous at x̄, then there exists
an open neighborhood V of F (x̄) such that for each m,
there exists xm and ym such that xm ∈ B 1

m
(x̄), ym ∈ F (xm),

and ym /∈ V .

▶ Then xm → x̄, while no subsequence of {ym} can converge to
a point in F (x̄).
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Closed Graph

Definition 3.2
F : X → Y has a closed graph if its graph,

Graph(F ) = {(x, y) ∈ X × Y | y ∈ F (x)},

is closed (relative to X × Y ).

Definition 3.3
▶ F : X → Y is closed at x̄ if

xm → x̄, ym ∈ F (xm) for all m ∈ N, and ym → y

⇒ y ∈ F (x̄).

▶ F : X → Y is closed if it is closed at all x̄ ∈ X.

Proposition 3.3

F : X → Y has a closed graph if and only if it is closed.
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Upper Semi-Continuity + Closed-Valuedness

Proposition 3.4

If F is upper semi-continuous and closed-valued,
then it has a closed graph.
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Proof

▶ Let ym ∈ F (xm) for all m ∈ N and
(xm, ym) → (x̄, ȳ) ∈ X × Y .

▶ Take any ε > 0.

▶ Bε(F (x̄)) being an open neighborhood of F (x̄), there exists
an open neighborhood U of x̄ such that F (U) ⊂ Bε(F (x̄)) by
the upper semi-continuity of F at x̄.

▶ Since xm → x̄, there exists M such that for all m ≥ M ,
xm ∈ U and hence ym ∈ F (U) ⊂ Bε(F (x̄)).

Therefore, we have ȳ ∈ B̄ε(F (x̄)).

▶ Since ε > 0 has been taken arbitrarily and since F (x̄) is
closed, we have ȳ ∈ F (x̄) (by Proposition 2.9).
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Upper Semi-Continuity + Compact-Valuedness

Proposition 3.5

For correspondences F : X → Y and G : X → Y ,
define the correspondence F ∩G : X → Y by
(F ∩G)(x) = F (x) ∩G(x) for all x ∈ X.
If

1. F has a closed graph, and

2. G is upper semi-continuous and compact-valued,

then F ∩G is upper semi-continuous and compact-valued.
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Proof
▶ Take any x̄ ∈ X, and consider any sequence {xm} ⊂ X such

that xm → x̄.

Let {ym} be any sequence such that
ym ∈ (F ∩G)(xm) = F (xm) ∩G(xm) for all m.

▶ Since ym ∈ G(xm) for all m, and by the upper semi-continuity
of G at x̄ and the compactness of G(x̄), there exist
a subsequence {ym(k)} and ȳ ∈ G(x̄) such that ym(k) → ȳ.

▶ Since ym ∈ F (xm) for all m,
we thus have a sequence {(xm(k), ym(k))} ⊂ Graph(F ) that
converges to (x̄, ȳ).

By the closedness of Graph(F ), we have (x̄, ȳ) ∈ Graph(F ),
i.e., ȳ ∈ F (x̄).

▶ Hence, we have ȳ ∈ (F ∩G)(x̄).

The conclusion therefore follows from Proposition 3.1.
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Upper Semi-Continuity + Compact-Valuedness

Proposition 3.6

For a correspondence F : X → Y , consider the following
conditions:

1. F is upper semi-continuous and compact-valued.

2. F has a closed graph and the images of compact sets are
compact.

3. F has a closed graph and the images of compact sets are
bounded.

4. F has a closed graph and is locally bounded.

We have the following:

▶ 1 ⇔ 2 ⇒ 3 ⇔ 4.

▶ If Y is closed, 3 ⇒ 2 (hence these conditions are equivalent).
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▶ Thus, if Y is closed, then our definition is equivalent to that in
MWG (condition 3) for compact-valued correspondences.

19 / 50



Proof

▶ 1 ⇒ 2:

By Propositions 3.2 and 3.4.

▶ 2 ⇒ 1:

Take any sequence {xm} ⊂ X such that xm → x̄ ∈ X and
any sequence {ym} ⊂ Y such that ym ∈ F (xm) for all m ∈ N.

Since A = {xm | m ∈ N} ∪ {x̄} is compact,
{ym} ⊂ F (A) has a convergent subsequence with a limit
ȳ ∈ F (A) by the compactness of F (A), where ȳ ∈ F (x̄) by
the closedness of the graph.

Therefore, the conclusion follows by Proposition 3.1.

▶ 2 ⇒ 3:

Immediate.
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Proof

▶ 3 ⇒ 4:

Suppose that F is not locally bounded,
i.e., there exists some x̄ ∈ X such that F (Bε(x̄) ∩X) is not
bounded for every ε > 0.

For each m ∈ N, let ym ∈ F (B1/m(x̄) ∩X) be such that
‖ym‖ > m, and let xm ∈ B1/m(x̄) ∩X be such that
ym ∈ F (xm).

By construction, xm → x̄.

Thus we have found a compact set {xm | m ∈ N} ∪ {x̄}
whose image is not bounded.
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Proof

▶ 4 ⇒ 3:

Suppose that there exists a compact set A ⊂ X such that
F (A) is not bounded.

For each m ∈ N, let ym ∈ F (A) be such that ‖ym‖ > m, and
let xm ∈ A be such that ym ∈ F (xm).

By the compactness of A, {xm} has a convergent
subsequence {xm(k)} with a limit x̄ ∈ A.

For any ε > 0, F (Bε(x̄) ∩X) contains {ym(k)}k≥K for
some K, which is unbounded.
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Proof

▶ 3 ⇒ 2 under the closedness of Y :

Let A ⊂ X be a compact set.

Take any {ym} ⊂ F (A), and let {xm} ⊂ A be such that
ym ∈ F (xm) for all m ∈ N.

By the compactness of A and the boundedness of F (A),
{(xm, ym)} has a convergent subsequence {(xm(k), ym(k))}
with a limit (x̄, ȳ) ∈ A× RK .

By the closedness of Y , ȳ ∈ Y , and therefore,
by the closedness of the graph of F , ȳ ∈ F (x̄) ⊂ F (A).

This implies that F (A) is compact.
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Upper Semi-Continuity + Compact-Valuedness

Corollary 3.7

Suppose that Y is compact.
F : X → Y is upper semi-continuous and compact-valued
if and only if it has a closed graph.

▶ Thus, if Y is compact, then our definition is equivalent to that in
Debreu for compact-valued correspondences.
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Lower Semi-Continuity

Let X and Y be nonempty subsets of RN and RK , respectively.

Definition 3.4
▶ A correspondence F : X → Y is lower semi-continuous at

x̄ ∈ X if
for any open set V (relative to Y ) such that F (x̄) ∩ V 6= ∅,
there exists an open neighborhood U (relative to X) of x̄
such that F (z) ∩ V 6= ∅ for all z ∈ U .

▶ For A ⊂ X, F : X → Y is lower semi-continuous on A if
it is lower semi-continuous at all x̄ ∈ A.

▶ F : X → Y is lower semi-continuous if
it is lower semi-continuous on X.
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Lower Semi-Continuity

Proposition 3.8

For a correspondence F : X → Y , the following statements are
equivalent:

1. F is lower semi-continuous at x̄.

2. For any sequence {xm} ⊂ X with xm → x̄ and any y ∈ F (x̄),
there exist a subsequence {xm(k)} of {xm} and a sequence
{yk} ⊂ Y such that yk ∈ F (xm(k)) for all k ∈ N and yk → y.

3. For any sequence {xm} ⊂ X with xm → x̄ and any y ∈ F (x̄),
there exist a sequence {ym} ⊂ Y and M ∈ N such that
ym ∈ F (xm) for all m ≥ M and ym → y.
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Lower Semi-Continuity

▶ Thus, our definition is equivalent to that in MWG.

▶ If F is nonempty-valued, then the proposition holds with
M = 1.

Thus, our definition is equivalent to that in Debreu for
nonempty-valued correspondences.
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Continuity

Let X and Y be nonempty subsets of RN and RK , respectively.

Definition 3.5
▶ A correspondence F : X → Y is continuous at x̄ ∈ X if

it is both upper and lower semi-continuous at x̄.

▶ For A ⊂ X, F : X → Y is continuous on A if
it is continuous at all x̄ ∈ A.

▶ F : X → Y is continuous if it is continuous on X.
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Example

Let X and A be nonempty subsets of RN and RK , respectively.

Given a function f : X ×A → R, define the correspondence
F : A → X by F (α) = {x ∈ X | f(x, α) ≥ 0}.

Proposition 3.9

If f is upper semi-continuous, then F has a closed graph.

Proposition 3.10

If

▶ for each x ∈ X, f(x, α) is lower semi-continuous in α, and

▶ for each α ∈ A, for any x ∈ X such that f(x, α) ≥ 0, and for
any ε > 0, there exists x′ ∈ Bε(x)∩X such that f(x′, α) > 0,

then F is lower semi-continuous.
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Example

▶ The correspondence B : RN
++ × R++ → RN

+ defined by

B(p, w) = {x ∈ RN
+ | p · x ≤ w}.

is continuous.
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Example

▶ For a function u : RN
+ → R, define the correspondence

V : R → RN
+ by

V (t) = {x ∈ RN
+ | u(x) ≥ t}.

▶ If u is upper semi-continuous, then V has a closed graph
(but may not be upper semi-continuous in general).

▶ If u is locally insatiable, then V is lower semi-continuous.
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Singleton Values

For a correspondence F : X → Y and a function f : X → Y ,
f is a selection of F if f(x) ∈ F (x) for all x ∈ X.

Proposition 3.11

For a correspondence F : X → Y , suppose that F (x̄) is a singleton
set.

▶ If F is upper semi-continuous at x̄,
then any selection of F is continuous at x̄.

▶ If there exists a selection continuous at x̄,
then F is lower semi-continuous at x̄.
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Singleton Values

Proposition 3.12

For a function f : X → Y , define the correspondence F : X → Y
by F (x) = {f(x)} for all x ∈ X.

▶ If f is continuous, then F is upper semi-continuous.

▶ If F is lower semi-continuous, then f is continuous.
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Parametric Constrained Optimization

Let X and A be nonempty subsets of RN and RK , respectively.

▶ For a function f : X ×A → R and a nonempty-valued
correspondence Γ: A → X, consider the maximization
problem

max
x

f(x, α) s. t. x ∈ Γ(α).

▶ If f is continuous and Γ is compact-valued, then
by the Extreme Value Theorem, a solution exists ∀α ∈ A.

▶ I.e., the value function v(α) = max
x∈Γ(α)

f(x, α) is well defined,

and the argmax correspondence X∗(α) = argmax
x∈Γ(α)

f(x, α)

is nonempty-valued (and in fact also compact-valued).

▶ What are the continuity properties of v and X∗?
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Theorem of the Maximum

Let X and A be nonempty subsets of RN and RK , respectively.

For a function f : X ×A → R and a correspondence Γ: A → X,
define the function v : A → [−∞,∞] by

v(α) = sup
x∈Γ(α)

f(x, α)

(let v(α) = −∞ if Γ(α) = ∅).

Proposition 3.13

If Γ is lower semi-continuous and f is lower semi-continuous,
then v is lower semi-continuous.

Proposition 3.14

If Γ is nonempty- and compact-valued and upper semi-continuous
and f is upper semi-continuous, then v is upper semi-continuous.
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Proof of Proposition 3.13

▶ Fix any c ∈ R.
We want to show that {α ∈ A | v(α) ≤ c} is closed.

▶ Suppose that v(αm) ≤ c and αm → ᾱ ∈ A.
We want to show that f(x, ᾱ) ≤ c for all x ∈ Γ(ᾱ).

▶ Take any x ∈ Γ(ᾱ).

By the lower semi-continuity of Γ at ᾱ, we have a sequence
{xm} ⊂ X such that xm ∈ Γ(αm) (for large m) and xm → x.

▶ Then f(xm, αm) ≤ v(αm) ≤ c,
but by the lower semi-continuity of f , we have f(x, ᾱ) ≤ c.
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Proof of Proposition 3.14

▶ Fix any c ∈ R.
We want to show that {α ∈ A | v(α) ≥ c} is closed.

▶ Suppose that v(αm) ≥ c and αm → ᾱ ∈ A.
We want to show that f(x, ᾱ) ≥ c for some x ∈ Γ(ᾱ).

▶ For each m, by the nonemptiness and compactness of Γ(αm)
and the upper semi-continuity of f(x, αm) in x,
we can take an xm ∈ Γ(αm) such that
f(xm, αm) = v(αm) ≥ c.

▶ By the upper semi-continuity of Γ at ᾱ and the compactness
of Γ(ᾱ), there exist a subsequence {xm(k)} of {xm} and
x̄ ∈ Γ(ᾱ) such that xm(k) → x̄.

▶ By the upper semi-continuity of f , we have f(x̄, ᾱ) ≥ c.
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Theorem of the Maximum

Define the correspondence X∗ : A → X by

X∗(α) = {x ∈ X | x ∈ Γ(α) and f(x, α) = v(α)}.

Proposition 3.15

Suppose that

▶ Γ is nonempty- and compact-valued and continuous, and

▶ f is continuous.

Then

1. X∗ is nonempty- and compact-valued,

2. v is continuous, and

3. X∗ is upper semi-continuous.
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Proof of Proposition 3.15

1. By the Extreme Value Theorem.

2. By Propositions 3.13 and 3.14.

3. The correspondence X̂(α) = {x ∈ X | f(x, α) = v(α)}
has a closed graph by the continuity of f and v.

Therefore, X∗ (= X̂ ∩ Γ) is upper semi-continuous by
Proposition 3.5.

39 / 50



Utility Maximization
For p ∈ RN

++ and w ∈ R++,

max
x∈RN

+

u(x)

s. t. p · x ≤ w.

▶ Indirect utility function · · · optimal value function:
the function v : RN

++ × R++ → (−∞,∞] defined by

v(p, w) = sup{u(x) | x ∈ B(p, w)}.

▶ Walrasian demand correspondence · · · optimal solution
correspondence:
the correspondence x : RN

++ × R++ → RN
+ defined by

x(p, w) = {x∗ ∈ RN
+ | x∗ ∈ B(p, w) and

u(x∗) ≥ u(x) for all x ∈ B(p, w)}.
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Proposition 3.16

Assume that u is continuous.
Then v is continuous, and x is nonempty- and compact-valued and
upper semi-continuous.

Proof

Since B is nonempty- and compact-valued and continuous,
the claim follows from the Theorem of the Maximum.
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Expenditure Minimization
Write v̄ = supu(RN

+ ), and assume u(0) < v̄.

For p ∈ RN
++ and t ∈ [u(0), v̄),

min
x∈RN

+

p · x

s. t. u(x) ≥ t.

▶ Expenditure function · · · optimal value function:
the function e : RN

++ × [u(0), v̄) → R defined by

e(p, t) = inf{p · x | u(x) ≥ t}.

▶ Hicksian demand correspondence · · · optimal solution
correspondence:
the correspondence h : RN

++ × [u(0), v̄) → RN
+ defined by

h(p, t) = {x∗ ∈ RN
+ | u(x∗) ≥ t and

p · x∗ ≤ p · x for all x ∈ RN
+ such that u(x) ≥ t}.
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Proposition 3.17

Assume that u is upper semi-continuous.

1. p 7→ e(p, t) is continuous, and p 7→ h(p, t) is nonempty- and
compact-valued and upper semi-continuous.

2. e is lower semi-continuous.

3. If u is locally insatiable, then e is continuous, and h is
nonempty- and compact-valued and upper semi-continuous.
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Proof

▶ The objective function p · x is continuous in (x, p).

▶ Let V (t) = {x ∈ RN
+ | u(x) ≥ t} (not bounded in general).

2, 3.

▶ Fix any (p̄, t̄) ∈ RN
++ × [u(0), v̄).

▶ Since t̄ < v̄ = supu(RN
+ ), there exists some x0 ∈ RN

+ such
that u(x0) > t̄.

▶ Let U0 = [u(0), u(x0)) (6= ∅).

▶ For t ∈ U0, define
V 0(t) = V (t) ∩ {x ∈ RN

+ | p̄ · x ≤ p̄ · x0 + 1}.

▶ For all t ∈ U0, V 0(t) 6= ∅ since x0 ∈ V 0(t).
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Proof
▶ Since {x ∈ RN

+ | p̄ · x ≤ p̄ · x0 + 1} is a neighborhood of
{x ∈ RN

+ | p̄ · x ≤ p̄ · x0} and p 7→ {x ∈ RN
+ | p · x ≤ p · x0} is

upper semi-continuous,

we can take an open neighborhood P 0 ⊂ RN
++ of p̄ such that

{x ∈ RN
+ | p · x ≤ p · x0} ⊂ {x ∈ RN

+ | p̄ · x ≤ p̄ · x0 + 1}
for all p ∈ P 0.

▶ By construction, for all (p, t) ∈ P 0 × U0,
−e(p, t) = sup{−(p · x) | x ∈ V 0(t)} and
h(p, t) = {x ∈ RN

+ | x ∈ V 0(t) and p · x = e(p, t)}.
▶ (p, t) 7→ V 0(t) has a closed graph by the upper

semi-continuity of u, and V 0(t) is contained in the compact
set {x ∈ RN

+ | p̄ · x ≤ p̄ · x0 + 1} for all (p, t) ∈ P 0 × U0.

Therefore, by Corollary 3.7, (p, t) 7→ V 0(t) is upper
semi-continuous and compact-valued.

▶ Thus by Proposition 3.14, −e is upper semi-continuous.
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Proof

▶ (p, t) 7→ V (t) is lower semi-continuous if u is locally insatiable.

Thus by Proposition 3.13, −e is lower semi-continuous.

▶ The upper semi-continuity of h follows as in the proof of
the Theorem of the Maximum.
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Proof

1.

▶ With fixed t̄, p 7→ V 0(t̄) is continuous (and compact-valued).

▶ Thus by the Theorem of the Maximum, p 7→ h(p, t̄) is
nonempty- and compact-valued and upper semi-continuous on
P 0, and p 7→ −e(p, t̄) is continuous on P 0.

47 / 50



Profit Maximization
For Y ⊂ RN with Y 6= ∅ and for p ∈ RN

++,

max
y∈RN

p · y

s. t. y ∈ Y.

▶ Profit function · · · optimal value function:
the function π : RN

++ → (−∞,∞] defined by

π(p) = sup{p · y | y ∈ Y }.

▶ Supply correspondence · · · optimal solution correspondence:
the correspondence S : RN

++ → RN defined by

S(p) = {y∗ ∈ RN | y∗ ∈ Y and p ·y∗ ≥ p ·y for all y ∈ Y }.
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Proposition 3.18

Suppose that Y is nonempty, closed, and convex.
If S(p̄) is nonempty and bounded, then there exists
an open neighborhood P 0 ⊂ RN

++ of p̄ such that

1. S(p) 6= ∅ for all p ∈ P 0 and
∪

p∈P 0 S(p) is bounded,

2. S is upper semi-continuous on P 0, and

3. π is continuous on P 0.
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Proof

▶ By the closedness and convexity of Y 6= ∅, the continuity of
p · y in (y, p), and the linearity of p · y in y,
there exists an open neighborhood P 0 ⊂ RN

++ of p̄ such that
S(p) 6= ∅ for all p ∈ P 0 and

∪
p∈P 0 S(p) is bounded.

(See Lemma A.4 in Oyama and Takenawa (2018).)

▶ For such P 0, let Y 0 = Cl
∪

p∈P 0 S(p), which is nonempty and
compact.

▶ Then, for p ∈ P 0, we have π(p) = max{p · y | y ∈ Y 0} and
S(p) = argmax{p · y | y ∈ Y 0}.

▶ Therefore, by the compactness of Y 0 and the continuity of
p · y in (y, p), the Theorem of the Maximum applies.
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