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Differentiation in One Variable

Let I ⊂ R be a nonempty interval.

Definition 5.1
▶ A function f : I → R is differentiable at x̄ ∈ I if

lim
h→0

f(x̄+ h)− f(x̄)

h

exists, i.e., if there exists a ∈ R such that
for any ε > 0, there exists δ > 0 such that

0 < |h| < δ, x̄+ h ∈ I =⇒
∣∣∣∣f(x̄+ h)− f(x̄)− ah

h

∣∣∣∣ < ε.

▶ In this case, the limit a is called the differential coefficient of
f at x̄, and denoted by f ′(x̄) or df

dx(x̄).
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▶ For I ′ ⊂ I, f is differentiable on I ′ if f is differentiable at all
x̄ ∈ I ′.

▶ f is differentiable if f is differentiable on I.

▶ If f is differentiable on I ′,
the function x 7→ f ′(x) from I ′ to R is called
the derivative function (or derivative) of f and
denoted by f ′ or df

dx .

▶ If f is differentiable and f ′ is continuous, then f is said to be
continuously differentiable or of class C1.
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Little o Notation

▶ If lim
x→x̄

g(x) = 0 and lim
x→x̄

f(x)

g(x)
= 0, we write

f(x) = o(g(x)) as x → x̄.

▶ For example, x2 = o(x) as x → 0.

(I.e., x2 is much smaller than x when x ≈ 0.)

▶ By f(x) = h(x) + o(g(x)), we mean f(x)− h(x) = o(g(x)).

▶ If f is differentiable at x̄, then

f(x) = f(x̄) + f ′(x̄)(x− x̄) + o(x− x̄) as x → x̄,

or

f(x̄+ ε) = f(x̄) + f ′(x̄)ε+ o(ε) as ε → 0.

(Often, “as ε → 0” is omitted.)

3 / 16



Differentiability and Continuity

Proposition 5.1

If f is differentiable at x̄, then it is continuous at x̄.

Proof

lim
x→x̄

f(x) = lim
x→x̄

(
f(x̄) + f ′(x̄)(x− x̄) + o(x− x̄)

)
= f(x̄).

▶ The converse does not hold.

For example, the continuous function x 7→ |x| is not
differentiable at 0.
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First-Order Condition for Optimality

Proposition 5.2

Let I ⊂ R be a nonempty open interval.
For f : I → R and x∗ ∈ I, if

▶ f(x∗) ≥ f(x) for all x ∈ I and

▶ f is differentiable at x∗,

then f ′(x∗) = 0.
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Proof

▶ For any sufficiently small ε > 0, we have f(x∗+ε)−f(x∗)
ε ≤ 0.

▶ Therefore,

f ′(x∗) = lim
ε↘0

f(x∗ + ε)− f(x∗)

ε
≤ 0.

▶ Similarly, we have f(x∗)−f(x∗−ε)
ε ≥ 0.

▶ Therefore,

f ′(x∗) = lim
ε↘0

f(x∗)− f(x∗ − ε)

ε
≥ 0.

6 / 16



Mean Value Theorem
Proposition 5.3

Suppose that f is continuous on [a, b] and differentiable on (a, b),
where a < b. Then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof

Consider g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

Note that g(a) = g(b) (= 0).
Since g is continuous on the compact set [a, b],
it has a maximum y∗ and a minimum y∗∗.
If y∗ = y∗∗, then the assertion obviously holds.

If y∗ 6= y∗∗,
then a maximizer x∗ exists in (a, b) in which case g′(x∗) = 0,
or a minimizer x∗∗ exists in (a, b) in which case g′(x∗∗) = 0.
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Applications

Suppose that f is continuous on [a, b] and differentiable on (a, b),
where a < b.

▶ If f ′(x) ≥ 0 for all x ∈ (a, b), then f is nondecreasing on [a, b]
(i.e., f(x1) ≤ f(x2) for any x1, x2 ∈ [a, b] with x1 < x2)

(The converse also holds.)

▶ If f ′(x) > 0 for all x ∈ (a, b), then f is strictly increasing on
[a, b] (i.e., f(x1) < f(x2) for any x1, x2 ∈ [a, b] with x1 < x2).

▶ If f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b].

▶ The following is false:
“if f is strictly increasing on [a, b], then f ′(x) > 0 for all
x ∈ (a, b)”.
Find a counter-example.
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Proof

Take any x1, x2 ∈ [a, b] with x1 < x2.

By the Mean Value Theorem, there exists some c ∈ (x1, x2) such
that

f ′(c) =
f(x2)− f(x1)

x2 − x1
.

Thus,

▶ f ′(x) ≥ 0 for all x ∈ (a, b) ⇒ f(x1) ≤ f(x2);

▶ f ′(x) > 0 for all x ∈ (a, b) ⇒ f(x1) < f(x2);

▶ f ′(x) = 0 for all x ∈ (a, b) ⇒ f(x1) = f(x2).
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Inverse Function Theorem: One Variable Case

Proposition 5.4

Let I ⊂ R be a nonempty open interval.
Suppose that f : I → R is of class C1 and f ′(x̄) 6= 0 for x̄ ∈ I.
Then there exists an open interval J ⊂ I containing x̄ that
satisfies the following:

▶ f |J : J → f(J) is a bijection;

▶ (f |J)−1 : f(J) → J is of class C1; and

▶ ((f |J)−1)′(y) = 1
f ′((f |J )−1(y))

for all y ∈ f(J).

▶ f(J) = {y ∈ R | y = f(x) for some x ∈ J}.
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Higher Order Derivatives

Let I ⊂ R be a nonempty interval.
Suppose that a function f : I → R is differentiable on I.

▶ If the function f ′ is differentiable on I,
then f is said to be twice differentiable, and

the derivative function of f ′ is denoted by f ′′, or d2f
dx2 ,

and is called the 2nd derivative function of f .

▶ · · ·

▶ If the function f (n−1) is differentiable on I,
then f is said to be n times differentiable, and
the derivative function of f (n−1) is denoted by f (n), or dnf

dxn ,
and is called the nth derivative function of f ,
where f (1) = f ′.

▶ If f is n times differentiable and f (n) is continuous, then f is
said to be n times continuously differentiable or of class Cn.
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Taylor’s Theorem: 2nd Order Case

Let I ⊂ R be a nonempty open interval.
Let a, b ∈ I with a < b.

Proposition 5.5

1. If f : I → R is differentiable and f ′ is differentiable at a, then

f(x) = f(a)+f ′(a)(x−a)+
1

2
f ′′(a)(x−a)2+o((x−a)2).

2. If f : I → R is twice differentiable, then there exists c ∈ (a, b)
such that

f(b) = f(a) + f ′(a)(b− a) +
1

2
f ′′(c)(b− a)2.
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Proof
2.

▶ Let g(x) = f(x)− f(a)− f ′(a)(x− a)− 1

2
A(x− a)2, where

A is a constant such that g(b) = 0, i.e.,

A = 2
f(b)− f(a)− f ′(a)(b− a)

(b− a)2
.

We want to show that A = f ′′(c) for some c ∈ (a, b).

▶ We have g(a) = 0, g(b) = 0, and g′(a) = 0.

▶ Since g is differentiable on I (and so on [a, b]), there is some
c0 ∈ (a, b) such that g′(c0) = 0 by the Mean Value Theorem.

▶ Since g′ is differentiable on I (and so on [a, b]), there is some
c ∈ (a, c0) such that g′′(c) = 0 by the Mean Value Theorem.

▶ Since g′′(x) = f ′′(x)−A, we have A = f ′′(c).
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Second-Order Sufficient Condition for Optimality

Proposition 5.6

Let I ⊂ R be a nonempty open interval.
For f : I → R and x∗ ∈ I, if

▶ f is differentiable on I and f ′ is differentiable at x∗,

▶ f ′(x∗) = 0, and

▶ f ′′(x∗) < 0,

then x∗ is a strict local maximizer of f , i.e., there exists δ > 0
such that f(x∗) > f(x) for all x ∈ (x∗ − δ, x∗ + δ), x 6= x∗.
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Proof

▶ Since f ′(x∗) = 0, by Taylor’s Theorem we have

f(x) = f(x∗) +
1

2
f ′′(x∗)(x− x∗)2 + o((x− x∗)2),

i.e., lim
x→x∗

f(x)− f(x∗)

(x− x∗)2
=

1

2
f ′′(x∗).

▶ Since f ′′(x∗) < 0, we can take an ε > 0 such that
1
2f

′′(x∗) + ε < 0.

▶ Given this ε > 0, there exists δ > 0 such that
for any x ∈ (x∗ − δ, x∗ + δ), x 6= x∗,

f(x)− f(x∗)

(x− x∗)2
<

1

2
f ′′(x∗) + ε < 0,

so that f(x) < f(x∗).
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Second-Order Necessary Condition for Optimality

Proposition 5.7

Let I ⊂ R be a nonempty open interval.
For f : I → R and x∗ ∈ I, if

▶ f is differentiable on I and f ′ is differentiable at x∗, and

▶ x∗ is a maximizer of f ,

then f ′′(x∗) ≤ 0.

Proof

By Proposition 5.6.
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