5. Differentiation II

Daisuke Oyama

Mathematics II

April 25, 2025

Vectors and Matrices

- ▶ We regard elements in \mathbb{R}^N as column vectors.
- ▶ We denote the set of $M \times N$ matrices by $\mathbb{R}^{M \times N}$,

$$\begin{pmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{M1} & \cdots & a_{MN} \end{pmatrix} \in \mathbb{R}^{M \times N}.$$

- ▶ For $A \in \mathbb{R}^{M \times N}$, $A^{\mathrm{T}} \in \mathbb{R}^{N \times M}$ denotes the transpose of A.
- $ightharpoonup \mathbb{R}^N$ and $\mathbb{R}^{N \times 1}$ are naturally identified, and we use the natural identification

$$\underbrace{x \cdot y}_{\text{real number}} = \underbrace{x^{\mathrm{T}} y}_{1 \times 1 \text{ matrix}}$$

for
$$x, y \in \mathbb{R}^N$$
 or $x, y \in \mathbb{R}^{N \times 1}$.

Little o Notation

For functions $f,g\colon U\to\mathbb{R}$, where $U\subset\mathbb{R}^N$ is an open neighborhood of $\bar x\in\mathbb{R}^N$, if $\lim_{x\to \bar x}g(x)=0$ and $\lim_{x\to \bar x}\frac{f(x)}{g(x)}=0$, we write $f(x)=o(g(x)) \text{ as } x\to \bar x.$

$$\blacktriangleright \ \, \text{By} \,\, f(x) = h(x) + o(g(x)) \text{, we mean} \,\, f(x) - h(x) = o(g(x)).$$

Partial Differentiation

Let U be a nonempty open subset of \mathbb{R}^N .

- ▶ A function $f: U \to \mathbb{R}$ is partially differentiable with respect to x_i at $\bar{x} \in U$ if the function $x_i \mapsto f(\bar{x}_1, \dots, \bar{x}_{i-1}, x_i, \bar{x}_{i+1}, \dots, \bar{x}_N)$ is differentiable at \bar{x}_i .
- In this case, the differential coefficient is denoted by $f_i(\bar{x}), \, f_{x_i}(\bar{x}), \, \text{or} \, \frac{\partial f}{\partial x_i}(\bar{x}),$ and is called the partial differential coefficient of f with respect to x_i at \bar{x} .

We also say that $\frac{\partial f}{\partial x_i}(\bar{x})$ exists.

- ▶ f is partially differentiable with respect to x_i if it is partially differentiable with respect to x_i at all $\bar{x} \in U$.
- ▶ The function $x \mapsto f_i(x)$ is called the *partial derivative* function (or partial derivative) of f with respect to x_i and is denoted by f_i , f_{x_i} , or $\frac{\partial f}{\partial x_i}$.

Gradient Vectors

Let U be a nonempty open subset of \mathbb{R}^N .

▶ For a function $f: U \to \mathbb{R}$, if $\frac{\partial f}{\partial x_i}(\bar{x})$ exists for all $i = 1, \dots, N$, we write

$$\nabla f(\bar{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\bar{x}) \\ \vdots \\ \frac{\partial f}{\partial x_N}(\bar{x}) \end{pmatrix} \in \mathbb{R}^N,$$

which is called the *gradient vector* (or *gradient*) of f at \bar{x} .

Jacobian Matrices

Let U be a nonempty open subset of \mathbb{R}^N .

For a function $f: U \to \mathbb{R}^M$, if $\frac{\partial f_j}{\partial x_i}(\bar{x})$ exists for all $i = 1, \dots, N$ and $j = 1, \dots, M$, we write

$$Df(\bar{x}) = \begin{pmatrix} \nabla f_1(\bar{x})^{\mathrm{T}} \\ \vdots \\ \nabla f_M(\bar{x})^{\mathrm{T}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\bar{x}) & \cdots & \frac{\partial f_1}{\partial x_N}(\bar{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_M}{\partial x_1}(\bar{x}) & \cdots & \frac{\partial f_M}{\partial x_N}(\bar{x}) \end{pmatrix} \in \mathbb{R}^{M \times N},$$

which is called the *Jacobian matrix* (or *Jacobian*) of f at \bar{x} .

▶ For a function $f: U \to \mathbb{R}$, $Df(\bar{x}) = \nabla f(\bar{x})^{\mathrm{T}}$.

▶ For a function f(x,y) of $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^S$, we often write

$$D_x f(\bar{x}, \bar{y}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\bar{x}, \bar{y}) & \cdots & \frac{\partial f_1}{\partial x_N}(\bar{x}, \bar{y}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_M}{\partial x_1}(\bar{x}, \bar{y}) & \cdots & \frac{\partial f_M}{\partial x_N}(\bar{x}, \bar{y}) \end{pmatrix} \in \mathbb{R}^{M \times N},$$

and

$$D_{y}f(\bar{x},\bar{y}) = \begin{pmatrix} \frac{\partial f_{1}}{\partial y_{1}}(\bar{x},\bar{y}) & \cdots & \frac{\partial f_{1}}{\partial y_{S}}(\bar{x},\bar{y}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{M}}{\partial y_{1}}(\bar{x},\bar{y}) & \cdots & \frac{\partial f_{M}}{\partial y_{S}}(\bar{x},\bar{y}) \end{pmatrix} \in \mathbb{R}^{M \times S},$$

where

$$Df(\bar{x}, \bar{y}) = (D_x f(\bar{x}, \bar{y}) \quad D_y f(\bar{x}, \bar{y})) \in \mathbb{R}^{M \times (N+S)}.$$

Differentiation in Several Variables

Let U be a nonempty open subset of \mathbb{R}^N .

Definition 5.2

A function $f\colon U\to\mathbb{R}$ is differentiable (or totally differentiable) at $\bar x\in U$ if there exists $\bar p\in\mathbb{R}^N$ such that

$$\lim_{z\to 0}\frac{f(\bar x+z)-f(\bar x)-\bar p\cdot z}{\|z\|}=0,$$

or $f(\bar{x}+z)=f(\bar{x})+\bar{p}\cdot z+o(\|z\|)$ as $z\to 0$, i.e., for any $\varepsilon>0$, there exists $\delta>0$ such that

$$0 < ||z|| < \delta, \ \bar{x} + z \in U \Longrightarrow \frac{|f(\bar{x} + z) - f(\bar{x}) - \bar{p} \cdot z|}{||z||} < \varepsilon.$$

▶ In this case, $\frac{\partial f}{\partial x_i}(\bar{x})$ exists for all $i=1,\ldots,N$, and $\bar{p}=\nabla f(\bar{x}).$

Differentiability, Continuity, Partial Differentiability

Proposition 5.8

If f is differentiable at \bar{x} , then it is continuous at \bar{x} , and partially differentiable with respect to x_i at \bar{x} for each i.

However,

- partial differentiability does not imply differentiability; and
- partial differentiability does not even imply continuity.

Continuous Differentiability and Differentiability

Let U be a nonempty open subset of \mathbb{R}^N .

▶ $f: U \to \mathbb{R}$ is continuously differentiable or of class C^1 if it is partially differentiable with respect to x_1, \ldots, x_N and its partial derivative functions $\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_N}$ are continuous.

Proposition 5.9

If f is continuously differentiable, then it is differentiable.

Vector-Valued Functions

Let U be a nonempty open subset of \mathbb{R}^N .

For a function $f \colon U \to \mathbb{R}^M$, we write $f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_M(x) \end{pmatrix}$.

f is differentiable if f_m is differentiable for all $m=1,\ldots,M$.

 \triangleright When f is differentiable,

$$\lim_{z \to 0} \frac{1}{\|z\|} (f(\bar{x} + z) - f(\bar{x}) - Df(\bar{x})z) = 0,$$

where $Df(\bar{x}) \in \mathbb{R}^{M \times N}$ is the Jacobian matrix of f at \bar{x} .

• f is of class C^1 if f_m is of class C^1 for all $m=1,\ldots,M$.

Product Rule

Let $U \subset \mathbb{R}^N$ be a nonempty open set.

Proposition 5.10

Suppose that $f: U \to \mathbb{R}^M$ and $g: U \to \mathbb{R}^M$ are differentiable. Define the function $h: U \to \mathbb{R}$ by $h(x) = f(x)^T g(x)$. Then h is differentiable and satisfies

$$\underbrace{Dh(x)}_{1\times N} = \underbrace{g(x)^{\mathrm{T}}}_{1\times M}\underbrace{Df(x)}_{M\times N} + \underbrace{f(x)^{\mathrm{T}}}_{1\times M}\underbrace{Dg(x)}_{M\times N}$$

for all $x \in U$.

Chain Rule

Let $U \subset \mathbb{R}^N$ and $V \subset \mathbb{R}^S$ be nonempty open sets.

Proposition 5.11

Suppose that $g\colon V\to U$ and $f\colon U\to\mathbb{R}^M$ are differentiable. Define the function $h\colon V\to\mathbb{R}^M$ by h(x)=f(g(x)). Then h is differentiable and satisfies

$$\underbrace{Dh(x)}_{M\times S} = \underbrace{Df(g(x))}_{M\times N} \underbrace{Dg(x)}_{N\times S}$$

for all $x \in V$.

Example 1-1

- For a function $f \colon \mathbb{R}^N \to \mathbb{R}$ and $y, z \in \mathbb{R}^N$, consider the function $h \colon \mathbb{R} \to \mathbb{R}$ defined by $h(\alpha) = f(y + \alpha z)$.
- ▶ Define the function $g \colon \mathbb{R} \to \mathbb{R}^N$ by $g(\alpha) = y + \alpha z$. Then $h(\alpha) = f(g(\alpha))$.
- By the Chain rule,

$$\begin{split} h'(\alpha) &= Dh(\alpha) = Df(g(\alpha))Dg(\alpha) \\ &= \underbrace{Df(y + \alpha z)}_{1\times N}\underbrace{z}_{N\times 1} & \text{(matrix product)} \\ &= \underbrace{\nabla f(y + \alpha z)}_{\in \mathbb{R}^N} \cdot \underbrace{z}_{\in \mathbb{R}^N}. & \text{(inner product)} \end{split}$$

Example 1-2

► For a function $f: \mathbb{R}^N \to \mathbb{R}^N$ and $y, z \in \mathbb{R}^N$, consider the function $k: \mathbb{R} \to \mathbb{R}$ defined by

$$k(\alpha) = z^{\mathrm{T}} f(y + \alpha z).$$

▶ By the Chain rule,

$$k'(\alpha) = Dk(\alpha) = z^{\mathrm{T}} D_{\alpha} [f(y + \alpha z)]$$
$$= \underbrace{z^{\mathrm{T}}}_{1 \times N} \underbrace{Df(y + \alpha z)}_{N \times N} \underbrace{z}_{N \times 1}.$$

Example 2: Slutsky Equation

- \blacktriangleright $x: \mathbb{R}^{N}_{++} \times \mathbb{R}_{+} \to \mathbb{R}^{N}_{+}$: Walrasian demand function
 - ▶ $h: \mathbb{R}^N_{++} \times \mathbb{R} \to \mathbb{R}^N_+$: Hicksian demand function
 - $e: \mathbb{R}^N_{++} \times \mathbb{R} \to \mathbb{R}$: expenditure function
- ▶ By duality, we have h(p) = x(p, e(p)). (The fixed utility level u is omitted.) I.e., if $g: \mathbb{R}_{++}^N \to \mathbb{R}_{++}^N \times \mathbb{R}_+$ is defined by g(q) = (q, e(q)), then h(p) = x(q(p)).
- ▶ $Dg(q) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ e_1 & e_2 \end{pmatrix}$, where $e_n = \frac{\partial e}{\partial p_n}$ (and N = 2).
- We will also write $x_{np_k} = \frac{\partial x_n}{\partial p_k}$ and $x_{nw} = \frac{\partial x_n}{\partial w}$.

Then by the Chain Rule,

$$\begin{split} Dh(p) &= Dx(g(p))Dg(p) \\ &= \begin{pmatrix} x_{1p_1} & x_{1p_2} & x_{1w} \\ x_{2p_1} & x_{2p_2} & x_{2w} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ e_1 & e_2 \end{pmatrix} \\ &= \begin{pmatrix} x_{1p_1} & x_{1p_2} \\ x_{2p_1} & x_{2p_2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} x_{1w} \\ x_{2w} \end{pmatrix} \begin{pmatrix} e_1 & e_2 \end{pmatrix} \\ &= \underbrace{D_p x(p, e(p))}_{N \times N} + \underbrace{D_w x(p, e(p))}_{N \times 1} \underbrace{D_p e(p)}_{1 \times N} \\ &= \underbrace{D_p x(p, e(p))}_{N \times N} + \underbrace{D_w x(p, e(p))}_{N \times 1} \underbrace{h(p)^T}_{1 \times N}, \end{split}$$

where the last equality follows from $\underbrace{\nabla e(p)}_{N\times 1} = \underbrace{h(p)}_{N\times 1}$ ("Hotelling's Lemma").

16 / 51

Example 3: Homogeneous Functions and Euler's Formula

Definition 5.3

A function $f \colon \mathbb{R}^N_+ \to \mathbb{R}$ is homogeneous of degree k if

$$f(tx) = t^k f(x)$$

for all t > 0 and all $x \in \mathbb{R}^N_+$.

Proposition 5.12

If f is homogeneous of degree k and differentiable, then for all i, $\frac{\partial f}{\partial x_i}$ is homogeneous of degree k-1.

Proof

- Since $f(tx) = t^k f(x)$ holds for any value of x_i , it holds that $\frac{\partial}{\partial x_i}(\mathsf{LHS}) = \frac{\partial}{\partial x_i}(\mathsf{RHS})$.
- Since

$$\frac{\partial}{\partial x_i}(\mathsf{LHS}) = t \frac{\partial f}{\partial x_i}(tx),$$

and

$$\frac{\partial}{\partial x_i}(\mathsf{RHS}) = t^k \frac{\partial f}{\partial x_i}(x),$$

we have
$$\frac{\partial f}{\partial x_i}(tx) = t^{k-1} \frac{\partial f}{\partial x_i}(x)$$
.

Proposition 5.13

If f is homogeneous of degree k and differentiable, then

$$\nabla f(x) \cdot x = kf(x)$$

for all $x \in \mathbb{R}^N_+$.

Proof

- Since $f(tx) = t^k f(x)$ holds for any value of t, it holds that $\frac{\partial}{\partial t}(\mathsf{LHS}) = \frac{\partial}{\partial t}(\mathsf{RHS})$.
- We have

$$\frac{\partial}{\partial t}(\mathsf{LHS}) = \nabla f(tx) \cdot x,$$

and

$$\frac{\partial}{\partial t}(\mathsf{RHS}) = kt^{k-1}f(x).$$

Since these are equal, evaluating at t=1 we have $\nabla f(x) \cdot x = kf(x)$.

Example 4: A Property of the Hicksian Demand Function

- ▶ The Hicksian demand function h(p, u) is homogeneous of degree 0 in p.
- ▶ By Proposition 5.13, we have

$$\underbrace{D_p h(p,u)}_{N\times N} \underbrace{p}_{N\times 1} = \underbrace{0}_{N\times 1}.$$

Mean Value Theorem in Several Variables

Let $U \subset \mathbb{R}^N$ be a nonempty open convex set.

Proposition 5.14

Suppose that $f: U \to \mathbb{R}$ is differentiable.

Then for any $x, y \in U$, there exists $\alpha_0 \in (0, 1)$ such that

$$f(y) - f(x) = \nabla f((1 - \alpha_0)x + \alpha_0 y) \cdot (y - x).$$

Proof

- ▶ Consider the differentiable function $h(\alpha) = f(x + \alpha(y x))$.
- By the Mean Value Theorem in one variable, there exists $\alpha_0 \in (0,1)$ such that $h(1)-h(0)=h'(\alpha_0)(1-0)$, or $f(y)-f(x)=\nabla f(x+\alpha_0(y-x))\cdot (y-x)$.

Second Order Differentiation

▶ The partial derivative of $\frac{\partial f}{\partial x_i}$ with respect to x_i is written as

$$\frac{\partial^2 f}{\partial x_i^2}$$
 or $f_{x_i x_i}$ or f_{ii} .

▶ The partial derivative of $\frac{\partial f}{\partial x_i}$ with respect to x_j is written as

$$\frac{\partial^2 f}{\partial x_i \partial x_i}$$
 or $f_{x_i x_j}$ or f_{ij} .

- ► These are called the second partial derivative functions, or second partial derivatives, of f.
- f is twice continuously differentiable or of class C^2 if all the second partial derivatives exist and are continuous.

Hessian Matrices

Let U be a nonempty open subset of \mathbb{R}^N .

► For a function $f: U \to \mathbb{R}$, if all the second partial derivatives exist at \bar{x} , we write

$$D^{2}f(\bar{x}) = D\nabla f(\bar{x})$$

$$= \begin{pmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(\bar{x}) & \cdots & \frac{\partial^{2}f}{\partial x_{N}\partial x_{1}}(\bar{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{N}}(\bar{x}) & \cdots & \frac{\partial^{2}f}{\partial x_{N}^{2}}(\bar{x}) \end{pmatrix} \in \mathbb{R}^{N \times N},$$

which is called the *Hessian matrix* (or *Hessian*) of f at \bar{x} .

Some textbooks define the Hessian to be the transpose of this matrix.

Young's Theorem

▶ In general, $\frac{\partial^2 f}{\partial x_j \partial x_i}(x) \neq \frac{\partial^2 f}{\partial x_i \partial x_j}(x)$.

Proposition 5.15

If $f: U \to \mathbb{R}$ is of class C^2 , then $D^2 f(x)$ is symmetric, i.e.,

$$\frac{\partial^2 f}{\partial x_j \partial x_i}(x) = \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \text{ for all } i, j = 1, \dots, N,$$

for all $x \in U$.

- ► There are other, weaker conditions, such as "all the first partial derivatives are differentiable".
- ► The above proposition, or one with a weaker condition, is called Young's theorem, Schwarz's theorem, or Clairaut's theorem.

Example 5: Symmetry of $D_ph(p, u)$

- ▶ By "Hotelling's Lemma", $h(p, u) = \nabla_p e(p, u)$.
- If h is of class C^1 in p, so that e is of class C^2 in p, then $D_ph(p,u)=D^2e(p,u)$ is symmetric by Young's Theorem.

Example 6

For a function $f \colon \mathbb{R}^N \to \mathbb{R}$ and $y, z \in \mathbb{R}^N$, define the function $g \colon \mathbb{R} \to \mathbb{R}^N$ by $g(\alpha) = \nabla f(y + \alpha z)$.

Then by the Chain rule,

$$Dg(\alpha) = D\nabla f(y + \alpha z)z = \underbrace{D^2 f(y + \alpha z)}_{N \times N} \underbrace{z}_{N \times 1} \in \mathbb{R}^{N \times 1}.$$

Consider the function $h\colon \mathbb{R} \to \mathbb{R}$ defined by $h(\alpha) = f(y + \alpha z)$. As we have seen $h'(\alpha) = \nabla f(y + \alpha z) \cdot z = g(\alpha) \cdot z$. Then,

$$h''(\alpha) = Dg(\alpha) \cdot z$$

= $(D^2 f(y + \alpha z)z) \cdot z = z \cdot D^2 f(y + \alpha z)z$
= $z^{\mathrm{T}} D^2 f(y + \alpha z)z$.

Taylor's Theorem: 2nd Order Case

Let $U \subset \mathbb{R}^N$ be a nonempty open convex set. Let $\bar{x} \in U$ and let $z \in \mathbb{R}^N$ such that $x + z \in U$.

Proposition 5.16

1. If $f\colon U\to\mathbb{R}$ is differentiable and ∇f is differentiable at $\bar x\in U$, then

$$f(\bar{x} + z) = f(\bar{x}) + \nabla f(\bar{x}) \cdot z + \frac{1}{2}z \cdot D^2 f(\bar{x})z + o(\|z\|^2).$$

2. If f is twice differentiable, then there exists $\alpha_0 \in (0,1)$ such that

$$f(\bar{x}+z) = f(\bar{x}) + \nabla f(\bar{x}) \cdot z + \frac{1}{2}z \cdot D^2 f(\bar{x}+\alpha_0 z)z.$$

Implicit Function Theorem

Let $A \subset \mathbb{R}^N$ and $B \subset \mathbb{R}^M$ be nonempty open sets.

Proposition 5.17

Suppose that $f: A \times B \to \mathbb{R}^N$, $(x,q) \mapsto f(x,q)$, is of class C^1 . Assume that $f(\bar{x},\bar{q})=0$, where $(\bar{x},\bar{q})\in A\times B$, and $|D_xf(\bar{x},\bar{q})|\neq 0$.

Then there exist an open neighborhood $U\subset A$ of $\bar x$, an open neighborhood $V\subset B$ of $\bar q$, and a C^1 function $\eta\colon V\to U$ that satisfy the following:

- for all $(x,q) \in U \times V$, $f(x,q) = 0 \iff x = \eta(q)$; and
- $D\eta(\bar{q}) = -[D_x f(\bar{x}, \bar{q})]^{-1} D_q f(\bar{x}, \bar{q}).$

Intuition

- ▶ Suppose that $f(\bar{x}, \bar{q}) = 0$.
- Given $q \approx \bar{q}$, we want to solve the equation f(x,q) = 0 in x.
- ▶ Locally, the equation is approximated by the *linear* equation

$$\underbrace{D_x f(\bar{x}, \bar{q})}_{N \times N} \underbrace{(x - \bar{x})}_{\in \mathbb{R}^N} + \underbrace{D_q f(\bar{x}, \bar{q})}_{N \times M} \underbrace{(q - \bar{q})}_{\in \mathbb{R}^M} = \underbrace{0}_{\in \mathbb{R}^N}.$$

▶ If $|D_x f(\bar{x}, \bar{q})| \neq 0$, then this linear equation has a solution, and the solution is given as a function of q by

$$\theta(q) = \bar{x} - [D_x f(\bar{x}, \bar{q})]^{-1} D_q f(\bar{x}, \bar{q}) (q - \bar{q}),$$

where

$$D\theta(q) = -[D_x f(\bar{x}, \bar{q})]^{-1} D_q f(\bar{x}, \bar{q}).$$

 $lackbox{}{}$ $\theta(q)$ is a linear approximation of the solution $\eta(q)$ of the original equation.

Concave Functions

Definition 5.4

Let $X \subset \mathbb{R}^N$ be a nonempty convex set.

▶ A function $f: X \to \mathbb{R}$ is *concave* if

$$f((1-\alpha)x + \alpha x') \ge (1-\alpha)f(x) + \alpha f(x')$$

for all $x, x' \in X$ and all $\alpha \in [0, 1]$.

▶ $f: X \to \mathbb{R}$ is strictly concave if

$$f((1-\alpha)x + \alpha x') > (1-\alpha)f(x) + \alpha f(x')$$

for all $x, x' \in X$ with $x \neq x'$ and all $\alpha \in (0, 1)$.

▶ $f: X \to \mathbb{R}$ is convex (strictly convex, resp.) if -f is concave (strictly concave, resp.).

Characterization of Concave Functions

Let $X \subset \mathbb{R}^N$ be a nonempty convex set.

Lemma 5.18

 $f\colon X \to \mathbb{R}$ is (strictly) concave if and only if for any $x \in X$ and any $z \in \mathbb{R}^N$ with $x+z \in X$, for $t \in (0,1]$,

$$\frac{f(x+tz)-f(x)}{t}$$

is nonincreasing (strictly decreasing) in t.

Characterization via Gradient

Let $X \subset \mathbb{R}^N$ be a nonempty open convex set.

Proposition 5.19

Suppose that $f \colon X \to \mathbb{R}$ is differentiable.

► f is concave if and only if

$$f(x+z) \le f(x) + \nabla f(x) \cdot z$$

for all $x \in X$ and all $z \in \mathbb{R}^N$ with $x + z \in X$.

f is strictly concave if and only if

$$f(x+z) < f(x) + \nabla f(x) \cdot z$$

for all $x \in X$ and all $z \neq 0$ with $x + z \in X$.

Proof (1/2)

► The "if" part:

Take any $x,x'\in X$ and $\alpha\in(0,1)$, and denote $x''=(1-\alpha)x+\alpha x'.$ By assumption,

$$f(x) \le f(x'') + \nabla f(x'') \cdot (x - x''),\tag{1}$$

$$f(x') \le f(x'') + \nabla f(x'') \cdot (x' - x'').$$
 (2)

From (1) \times (1 – α) + (2) \times α , we have

$$(1 - \alpha)f(x) + \alpha f(x') \le f(x'').$$

▶ For strict concavity, replace "≤" with "<" (assuming $x \neq x'$).

Proof (2/2)

- The "only if" part: Suppose that f is concave, and fix any $x \in X$ and $z \in \mathbb{R}^N$ with $x + z \in X$.
- ▶ By Lemma 5.18, for t > 0, $\frac{f(x+tz) f(x)}{t}$ is decreasing in t.
- In particular, we have $\frac{f(x+tz)-f(x)}{t} \geq f(x+z)-f(x)$ for $t \in (0,1].$
- Let $t \searrow 0$. Then by the definition of differentiation,

$$(\mathsf{LHS}) \nearrow \frac{\partial}{\partial t} f(x+tz) \Big|_{t=0} = \nabla f(x+tz) \cdot z \Big|_{t=0} = \nabla f(x) \cdot z.$$

▶ For strict concavity, replace " \geq " with ">" (assuming $z \neq 0$).

Characterization via Gradient

Let $X \subset \mathbb{R}^N$ be a nonempty open convex set.

Proposition 5.20

Suppose that $f \colon X \to \mathbb{R}$ is differentiable.

f is concave if and only if

$$(\nabla f(x') - \nabla f(x)) \cdot (x' - x) \le 0$$

for all $x, x' \in X$.

f is strictly concave if and only if

$$(\nabla f(x') - \nabla f(x)) \cdot (x' - x) < 0$$

for all $x, x' \in X$ with $x \neq x'$.

Proof (1/2)

► The "if" part:

Fix any $x \in X$ and $z \in \mathbb{R}^N$ with $x + z \in X$.

▶ Let

$$g(t) = f(x+tz) - f(x) - \nabla f(x) \cdot (tz).$$

By Proposition 5.19, it suffices to show that $g(1) \leq 0$.

For all $t \in (0,1]$, we have

$$g'(t) = \nabla f(x+tz) \cdot z - \nabla f(x) \cdot z$$
$$= (\nabla f(x+tz) - \nabla f(x)) \cdot (tz)/t \le 0$$

by assumption.

- ▶ Since g(0) = 0, it follows that $g(1) \le 0$.
- ▶ For strict concavity, replace "≤" with "<" (assuming $z \neq 0$).

Proof (2/2)

- The "only if" part: Suppose that f is concave, and fix any $x, x' \in X$.
- ▶ By Proposition 5.19, we have

$$f(x') \le f(x) + \nabla f(x) \cdot (x' - x),$$

$$f(x) \le f(x') + \nabla f(x') \cdot (x - x').$$

Combining these inequalities, we have

$$0 \le -(\nabla f(x) - \nabla f(x')) \cdot (x' - x).$$

▶ For strict concavity, replace "≤" with "<" (assuming $x \neq x'$).

Differentiability and Partial Differentiability

Let $X \subset \mathbb{R}^N$ be a nonempty convex set.

Fact 1

Suppose that $f\colon X\to\mathbb{R}$ is concave, and let $\bar x\in\operatorname{Int} X.$ If $\frac{\partial f}{\partial x_i}(\bar x)$ exists for all $i=1,\ldots,N$, then f is differentiable at $\bar x.$

This does not hold for general functions.

Characterization via Hessian

Let $X \subset \mathbb{R}^N$ be a nonempty open convex set.

Proposition 5.21

Suppose that $f \colon X \to \mathbb{R}$ is differentiable and ∇f is differentiable.

• f is concave if and only if for all $x \in X$, $D^2f(x)$ is negative semi-definite, i.e.,

$$z \cdot D^2 f(x) z \le 0$$

for all $z \in \mathbb{R}^N$.

▶ If for all $x \in X$, $D^2f(x)$ is negative definite, i.e.,

$$z \cdot D^2 f(x) z < 0$$

for all $z \neq 0$, then f is strictly concave.

Proof (1/2)

- ▶ The "if" part: Fix any $x, x' \in X$, and write z = x' x.
- ► Let

$$g(t) = (\nabla f(x + tz) - \nabla f(x)) \cdot z.$$

By Proposition 5.20, it suffices to show that $g(1) \leq 0$.

▶ For all $t \in (0,1]$, we have

$$g'(t) = z \cdot D^2 f(x + tz)z \le 0$$

by assumption.

- ▶ Since g(0) = 0, it follows that $g(1) \le 0$.
- ▶ For strict concavity, replace "≤" with "<" (assuming $x \neq x'$).

Proof (2/2)

► The "only if" part: Suppose that f is concave.

By Proposition 5.20, $(\nabla f(x') - \nabla f(x)) \cdot (x' - x) \le 0$ for any $x, x' \in X$.

Fix any $x \in X$ and $z \in \mathbb{R}^N$, and consider the function $g(t) = \nabla f(x+tz) \cdot z$ (defined for t such that $x+tz \in X$).

 \blacktriangleright By assumption, for t' > t, we have

$$(g(t') - g(t))(t' - t) = (\nabla f(x+t'z) - \nabla f(x+tz)) \cdot \{(x+t'z) - (x+tz)\} \le 0,$$

which implies that g is nonincreasing.

► Therefore, $g'(t) = z \cdot D^2 f(x+tz)z \le 0$ for all t. In particular, we have $g'(0) = z \cdot D^2 f(x)z \le 0$.

Quasi-Concave Functions

Definition 5.5

Let $X \subset \mathbb{R}^N$ be a nonempty convex set.

- $f \colon X \to \mathbb{R}$ is quasi-concave if $f((1-\alpha)x + \alpha x') \ge f(x)$ for all $x, x' \in A$ such that $f(x') \ge f(x)$ and all $\alpha \in [0,1]$.
- ▶ $f: X \to \mathbb{R}$ is strictly quasi-concave if $f((1-\alpha)x + \alpha x') > f(x)$ for all $x, x' \in A$ with $x \neq x'$ such that $f(x') \geq f(x)$ and all $\alpha \in (0,1)$.
- ightharpoonup f is (strictly) quasi-concave.

Characterization via Gradient

Let $X \subset \mathbb{R}^N$ be a nonempty open convex set.

Proposition 5.22

Suppose that $f: X \to \mathbb{R}$ is differentiable.

1. f is quasi-concave if and only if for all $x, x' \in X$,

$$f(x') \ge f(x) \Rightarrow \nabla f(x) \cdot (x' - x) \ge 0.$$
 (3)

2. If f is quasi-concave, then for all $x, x' \in X$,

$$f(x') > f(x), \ \nabla f(x) \neq 0 \Rightarrow \nabla f(x) \cdot (x' - x) > 0.$$
 (4)

Proof

1. "Only if" part

ightharpoonup Suppose that f is quasi-concave.

Fix any $x, x' \in X$, and assume that $f(x') \ge f(x)$.

Consider the function g(t) = f((1-t)x + tx').

- ▶ By quasi-concavity, $g(t) \ge g(0)$ for all $t \in [0,1]$.
- ▶ Therefore, $g'(0) \ge 0$, where $g'(0) = \nabla f(x) \cdot (x' x)$.

Proof

1. "If" part

▶ Suppose that *f* is not quasi-concave.

Then there exist $\bar{x}, \bar{x}' \in X$, $\bar{x} \neq \bar{x}'$, and $\bar{\alpha} \in [0,1]$ such that $f(\bar{x}') \geq f(\bar{x}) > f((1-\bar{\alpha})\bar{x} + \bar{\alpha}\bar{x}')$.

- ► Consider the function $g(t) = f((1-t)\bar{x} + t\bar{x}')$.
- Let $M=\min_{t\in[0,1]}g(t)< g(0)$, and let $\alpha^*=\min\{t\in[0,1]\mid g(t)=M\}$ (which is well defined by the continuity of g).

- ▶ By the continuity of g, there exists $\delta > 0$ such that g(t) < g(0) for all $t \in (\alpha^* \delta, \alpha^*)$.
- ▶ By the Mean Value Theorem, there exists $\alpha^{**} \in (\alpha^* \delta, \alpha^*)$ such that $g'(\alpha^{**}) = \frac{g(\alpha^*) g(\alpha^* \delta)}{\delta} < 0$.
- ► Therefore, letting $x^{**} = (1 \alpha^{**})\bar{x} + \alpha^{**}\bar{x}'$, we have

$$f(x^{**}) = g(\alpha^{**}) < g(0) = f(\bar{x}) \le f(\bar{x}')$$

and

$$g'(\alpha^{**}) = \nabla f(x^{**}) \cdot (\bar{x}' - \bar{x})$$
$$= \frac{1}{1 - \alpha^{**}} \nabla f(x^{**}) \cdot (\bar{x}' - x^{**}) < 0.$$

▶ This contradicts condition (3) (with $x = x^{**}$ and $x' = \bar{x}'$).

2.

- Suppose that f is quasi-concave and that f(x') > f(x) and $\nabla f(x) \neq 0$.
- ▶ By the continuity of f, we have $f(x' \varepsilon \nabla f(x)) > f(x)$ for some small $\varepsilon > 0$.
- ▶ Then by part 1, we have $\nabla f(x) \cdot ((x' \varepsilon \nabla f(x)) x) \ge 0$, or $\nabla f(x) \cdot (x' x) \ge \varepsilon \|\nabla f(x)\|^2 > 0$.

Characterization via Gradient

Let $X \subset \mathbb{R}^N$ be a nonempty open convex set.

Proposition 5.23

Suppose that $f: X \to \mathbb{R}$ is differentiable.

1. If for all $x, x' \in X$,

$$f(x') \ge f(x), \ x \ne x' \Rightarrow \nabla f(x) \cdot (x' - x) > 0,$$
 (5)

then f is strictly quasi-concave.

2. If f is strictly quasi-concave, then for all $x, x' \in X$,

$$f(x') \ge f(x), \ x \ne x', \ \nabla f(x) \ne 0$$

$$\Rightarrow \nabla f(x) \cdot (x' - x) > 0.$$
 (6)

Proof

1.

- Suppose that condition (5) holds.
- ▶ By part 1 of Proposition 5.22, *f* is quasi-concave.
- lacktriangle Assume that f is not strictly quasi-concave.

Then there exist
$$\bar{x}, \bar{x}' \in X$$
, $\bar{x} \neq \bar{x}'$, and $\bar{\alpha} \in (0,1)$ such that $f(\bar{x}') \geq f(\bar{x}) \geq f(\bar{x}'')$, where $\bar{x}'' = (1 - \bar{\alpha})\bar{x} + \bar{\alpha}\bar{x}' \ (\neq \bar{x}, \bar{x}')$.

- Consider the function $g(t) = f((1-t)\bar{x} + t\bar{x}')$, which is quasi-concave.
- ▶ Since $g(0) \geq g(\bar{\alpha})$, by part 1 of Proposition 5.22 we have $g'(\bar{\alpha})(0-\bar{\alpha}) \geq 0$, or $g'(\bar{\alpha}) \leq 0$, where $g'(\bar{\alpha}) = \nabla f(\bar{x}'') \cdot (\bar{x}'-\bar{x}) = \frac{1}{1-\bar{\alpha}} \nabla f(\bar{x}'') \cdot (\bar{x}'-\bar{x}'')$.
- ▶ This contradicts condition (5) (with $x = \bar{x}''$ and $x' = \bar{x}'$).

2.

- ▶ Suppose that f is strictly quasi-concave and that $f(x') \ge f(x)$, $x \ne x'$, and $\nabla f(x) \ne 0$.
- ▶ By strict quasi-concavity, $f\left(\frac{1}{2}x + \frac{1}{2}x'\right) > f(x)$.
- ▶ Then by part 2 of Proposition 5.22, we have $\nabla f(x) \cdot \left(\left(\frac{1}{2}x + \frac{1}{2}x'\right) x\right) > 0$, or $\frac{1}{2}\nabla f(x) \cdot (x' x) > 0$.

Characterization via Hessian

Let $X \subset \mathbb{R}^N$ be a nonempty open convex set.

Proposition 5.24

Suppose that $f: X \to \mathbb{R}$ is differentiable and ∇f is differentiable.

▶ If f is quasi-concave, then for all $x \in X$, $D^2f(x)$ is negative semi-definite on $\{z \in \mathbb{R}^N \mid \nabla f(x) \cdot z = 0\}$, i.e.,

$$z \cdot D^2 f(x) z \le 0$$

for all $z \in \mathbb{R}^N$ with $\nabla f(x) \cdot z = 0$.

▶ If for all $x \in X$, $D^2f(x)$ is negative definite on $\{z \in \mathbb{R}^N \mid \nabla f(x) \cdot z = 0\}$, i.e.,

$$z \cdot D^2 f(x) z < 0$$

for all $z \neq 0$ with $\nabla f(x) \cdot z = 0$, then f is strictly quasi-concave.