5. Differentiation Il

Daisuke Oyama

Mathematics Il

April 25, 2025



Vectors and Matrices
» We regard elements in RY as column vectors.

» We denote the set of M x N matrices by RM*HN

all e aiN
€ RM*N,

apmi - GMN

> For A e RMXN AT ¢ RNXM denotes the transpose of A.

» RY and RV*! are naturally identified,

and we use the natural identification
oy = a'y
~—~ ~—~

real number 1 x 1 matrix
for z,y € RN or 2,y € RVX1
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Little o Notation

» For functions f,g: U — R,

where U € RY is an open neighborhood of Z € RY,

if lim,_,z g(z) = 0 and lim,_,z % =0, we write

f(z) =o0(g(x)) as x — Z.

> By f(z) = h(x) + o(g(x)), we mean f(z) — h(x) =
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Partial Differentiation
Let U be a nonempty open subset of R,

> A function f: U — R is partially differentiable with respect to
x; at & € U if the function
x; = f(Z1,...,Ti-1,Ti, Tit1,...,2ZN) is differentiable at ;.

» In this case, the differential coefficient is denoted by
Fi(@), fur (@), or 2 (@),
and is called the partial differential coefficient of f with
respect to x; at .

We also say that %(j) exists.

P> f is partially differentiable with respect to z; if
it is partially differentiable with respect to x; at all z € U.

» The function x — f;(x) is called the partial derivative
function (or partial derivative) of f with respect to x; and is
denoted by f;, fz,, or g—i.
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Gradient Vectors

Let U be a nonempty open subset of R,

» For a function f: U — R, if %(i) exists forall i =1,..., N,

we write
IL (z)
Vi) = : eR"Y,
2L (z)

which is called the gradient vector (or gradient) of f at .
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Jacobian Matrices

Let U be a nonempty open subset of R,

» For a function f: U — RM if fj( ) exists
,Nandj=1,..., M, we write

foralli=1,.
Vfl(i’)T
Df(z) =
VfM(j)
@) - @
— : c RMXN,
i@ e Gh@

which is called the Jacobian matrix (or Jacobian) of f at Z.

» For a function f: U = R, Df(z) = Vf(z)".
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» For a function f(z,y) of z € RY and y € R®, we often write

0 - 0 o
L@y - Fh(zy)
Dxf(:fvg) = 6RMXN7
0 - ) _
and
ofr (= = Of1 (=~ —
aiyi( ) ) ﬁ( 3 )
Dyf(fa Q) = € RMXSv
2] R I5) _
éZ? (z,7) 5§g>tt,y)
where
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Differentiation in Several Variables
Let U be a nonempty open subset of R,

Definition 5.2
A function f: U — R is differentiable (or totally differentiable) at
z € U if there exists p € RY such that

o fE )~ f@) -5z

=0
2=0 Il ’

or f(z+2)=f()+p-z+o(||z]]) as z — 0,
i.e., for any € > 0, there exists § > 0 such that
|f(Z+2) - f(&)—p- 2|

< e.
2]l

0< |zl <0, Z+2€U =

» In this case, ﬁ(i) exists foralli=1,..., N, and
ox;

p=Vf(z)
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Differentiability, Continuity, Partial Differentiability

Proposition 5.8

If f is differentiable at T, then it is continuous at T, and
partially differentiable with respect to z; at T for each i.

However,
» partial differentiability does not imply differentiability; and

» partial differentiability does not even imply continuity.
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Continuous Differentiability and Differentiability

Let U be a nonempty open subset of RY.

» f:U — R is continuously differentiable or of class C' if

it is partially differentiable with respect to z1,...,zxy and
its partial derivative functions (fif e aif are continuous.

Proposition 5.9
If f is continuously differentiable, then it is differentiable.
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Vector-Valued Functions

Let U be a nonempty open subset of R,

fi(x)

» For a function f: U — RM we write f(z) = :
fu(x)
f is differentiable if f,, is differentiable for all m =1,..., M.

> When f is differentiable,

lim L (f(z +2) - f(z) - Df(¥)z) = 0,

=0 | z]|

where Df(z) € RM*N s the Jacobian matrix of f at z.

» fis of class C if f,, is of class C! forallm=1,..., M.
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Product Rule

Let U C RY be a nonempty open set.

Proposition 5.10

Suppose that f: U — RM and g: U — RM are differentiable.
Define the function h: U — R by h(z) = f(x) g(x).
Then h is differentiable and satisfies

Dh(z) = g(x)" Df(2) + f(2)" Dg(x)
—— Y N —
1xN IxM MxN IxM MxN

forall x € U.
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Chain Rule

Let U ¢ RN and V C R® be nonempty open sets.

Proposition 5.11

Suppose that g: V. — U and f: U — RM are differentiable.
Define the function h: V — RM by h(z) = f(g(z)).
Then h is differentiable and satisfies

Dh(z) = D f(g(z)) Dg(x)
—— N——— N~
MxS MxN NxS

forall x € V.
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Example 1-1

» For a function f: RY — R and y,z € RY,

consider the function h: R — R defined by h(a) = f(y + az).

» Define the function g: R — R¥ by g(a) =y + az.

Then h(a) = f(g(w)).
» By the Chain rule,

h'(ar) = Dh(er) = D f(g(e)) Dg(a)

=Df(y+az)_z
1xN Nx1

=Vily+az)- 2

———
RN eRN

(matrix product)

(inner product)
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Example 1-2

» For a function f: RY — RN and y, 2z € RV,
consider the function k£: R — R defined by

k(o) =2V f(y + az).
» By the Chain rule,

K'(a) = Dk(a) = 2T Do [ f(y + a2)]
= 2" Df(y+az)_z
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Example 2: Slutsky Equation

> > z:RY, xRy — RY: Walrasian demand function
> h: ]RL_ x R — Rf: Hicksian demand function

> e: RY, xR — R: expenditure function
» By duality, we have h(p) = z(p,e(p)).

(The fixed utility level u is omitted.)

le., if g: RY, — RY, x Ry is defined by g(q) = (g, e(q)),
then h(p) = x(g(p))-

1 0 e
» Dg(¢)=| 0 1|, wheree, =—-— (and N =2).
Opn
€1 €9
» We will also write x,,,, = gf?: and xp = E;:CU:L
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Then by the Chain Rule,

Dh(p) = Dz(g(p))Dg(p)
1 0

_ Tip; Tlps Tlw 0 1
L2py  L2py  T2w e1 e

Tipy Tlps 1 0 Tlw
= + el e
() o 3) () e e

= me(p, €(p)) + Dwx(pa e(p)) Dpe(p)

N;:N Nv><l IxN
= Dya(p, e(p)) + Duwa(p, e(p)) h(p)",
~ ~ SN~

NxN Nx1 1xN

where the last equality follows from Ve(p) = h(p)
—_——
Nx1 Nx1

(“Hotelling's Lemma”).
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Example 3: Homogeneous Functions and Euler’'s Formula

Definition 5.3
A function f: Rf — R is homogeneous of degree k if

ftz) =" f(x)

for all t > 0 and allxeRf.

17/51



Proposition 5.12

If f is homogeneous of degree k and differentiable,
then for all 1, % is homogeneous of degree k — 1.

Proof
» Since f(tx) = t¥ f(z) holds for any value of ;, it holds that
22 (LHS) = g(RHS)
» Since
0 ., of
oz, (LHS) = t@xi (tx),
and
0 _ k9f

0,
we have 2L (tz) = tF12L(z).
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Proposition 5.13
If f is homogeneous of degree k and differentiable, then

V(@)@ = kf()
for all x € Rf.

Proof
» Since f(tx) = t¥ f(z) holds for any value of ¢, it holds that
S(LHS) = 2. (RHS).

» We have
gt(LHS) = Vf(tz) -,
and
9 h—1
E(RHS) = kt" " f(z).

Since these are equal, evaluating at ¢t = 1 we have

Vi) -z =kf(x).
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Example 4: A Property of the Hicksian Demand Function

» The Hicksian demand function h(p,u) is homogeneous of
degree 0 in p.

» By Proposition 5.13, we have

D = .
ph(p,u) p = _0
NxN Nx1  Nx1
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Mean Value Theorem in Several Variables

Let U ¢ RY be a nonempty open convex set.

Proposition 5.14

Suppose that f: U — R is differentiable.
Then for any x,y € U, there exists ag € (0,1) such that

fy) = f(@) = V(1 — a0)z + agy) - (y — 2).

Proof
» Consider the differentiable function h(a) = f(z + a(y — z)).

» By the Mean Value Theorem in one variable, there exists
ap € (0,1) such that h(1) — h(0) = h'(ap)(1 — 0), or
fy) = (@) =Vf(z+aly— =) (y —2)
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Second Order Differentiation

» The partial derivative of with respect to x; is written as

i
o

6[1312 or fﬂfﬂfz or f“

» The partial derivative of with respect to x; is written as

8xi

o f
ox j 8.%'2

or fxixj or fl]

» These are called the second partial derivative functions,
or second partial derivatives, of f.

» f is twice continuously differentiable or of class C? if
all the second partial derivatives exist and are continuous.
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Hessian Matrices

Let U be a nonempty open subset of RY.

» For a function f: U — R, if all the second partial derivatives
exist at T, we write

D*f(z) = DV f(z)

21 i
83:% 83:]\/89:1
= : - : c RVxN
0%f 0*f
83;1(91:N (:L') @(Z’)

which is called the Hessian matrix (or Hessian) of f at Z.

P Some textbooks define the Hessian to be the transpose of this matrix.
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Young's Theorem

» In general, 696 (% (7) # 57 aC’:J( x).

Proposition 5.15
If f: U — R is of class C?, then D2f(a:) is symmetric, i.e.,
0% f

Ot (z) = (x) foralli,j =1 N
Ox;0x; " Ow;0x; A

forallz e U.

» There are other, weaker conditions,
such as “all the first partial derivatives are differentiable”.

» The above proposition, or one with a weaker condition, is called
Young's theorem, Schwarz's theorem, or Clairaut’s theorem.
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Example 5: Symmetry of D,h(p, u)

» By “Hotelling's Lemma”, h(p,u) = Vye(p, u).

» If his of class C! in p, so that e is of class C? in p,
then D,h(p,u) = D?e(p,u) is symmetric by Young's
Theorem.
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Example 6

» For a function f: RY — R and y,z € RY,
define the function g: R — RY by g(a) = Vf(y + az).

Then by the Chain rule,
Dg(a) = DVf(y +az)z = D*f(y+az)_z € RV*L
—_—
NxN Nx1
» Consider the function h: R — R defined by h(a) = f(y+ az).
As we have seen h/(a) = Vf(y+ az) -z = g(a) - z.
Then,
K'(a) = Dy(a) - 2
= (D’fly+az)z) - 2=z -D*f(y + az)z
=2T'D*f(y + az)z.
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Taylor's Theorem: 2nd Order Case

Let U ¢ RY be a nonempty open convex set.
Let Z € U and let z € RY such that z + 2z € U.

Proposition 5.16

1. If f: U — R is differentiable and V f is differentiable at
T € U, then

F(@+2) = [(@) + VF@) = + 52 D2 (@) + of ).

2. If f is twice differentiable, then there exists g € (0,1) such
that

f@+2z)=f(x)+ V(@) 2+ %z -D*f(Z + ag2)z.
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Implicit Function Theorem

Let A c RY and B ¢ RM™ be nonempty open sets.

Proposition 5.17

Suppose that f: Ax B — RN, (z,q) — f(x,q), is of class C'.
Assume that f(z,q) = 0, where (Z,q) € A x B, and

Dz f(2,q)| # 0.

Then there exist an open neighborhood U C A of T,
an open neighborhood V' C B of ¢, and a C* functionn: V — U
that satisfy the following:

» forall (x,q) e U XV, f(x,q) =0 < z =n(q), and
> Dn(q) = ~[Dof(2,9)] 7' Dy f(2.9).
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Intuition

>

>

>

Suppose that f(z,q) = 0.

Given ¢ ~ g, we want to solve the equation f(z,q) =0 in z.

Locally, the equation is approximated by the /inear equation

—_———— T —— N~ T
NXN €RN NxM  €RM ERN

If |D.f(Z,q)| # 0, then this linear equation has a solution,
and the solution is given as a function of ¢ by

0(q) =7 — (Do f(2,9)] ' Do f (2,9)(q — ),
where

DO(q) = —[D.f(, 7)) "Dy f(Z,0).

0(q) is a linear approximation of the solution 7(q) of
the original equation.
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Concave Functions

Definition 5.4
Let X C RY be a nonempty convex set.

> A function f: X — R is concave if
f(Q—a)z+aa’) = (1 - a)f(z) + af(@)
for all z,2' € X and all a € [0, 1].
» f: X — Ris strictly concave if
f(d =)z +aa’) > (1 - a)f(x) + af(a))
for all z,2' € X with x # 2’ and all « € (0, 1).

> f: X — Ris convex (strictly convex, resp.) if
—f is concave (strictly concave, resp.).
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Characterization of Concave Functions

Let X ¢ RY be a nonempty convex set.

Lemma 5.18

f:+ X — R is (strictly) concave if and only if
for any x € X and any z € RN withx + 2 € X,
for t € (0, 1],

flz+1tz) - f(z)
t

is nonincreasing (strictly decreasing) in t.
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Characterization via Gradient

Let X ¢ RY be a nonempty open convex set.

Proposition 5.19
Suppose that f: X — R is differentiable.

» f is concave if and only if

flz+2) < fle)+Vf(z)- 2

for all x € X and all z € RN withz+ 2 € X.

» f is strictly concave if and only if

fle+z2) < flx)+V[(z)- 2

forallz € X and all z # 0 withx + z € X.
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Proof (1/2)

> The “if" part:

Take any 2,2’ € X and « € (0,1), and denote
2" = (1 — a)z + az’. By assumption,

fl@) < f(@") + V(") - (2 —a"), (1)
f@@) < f@") + V(") (@' = 2"). (2)

From (1) x (1 — a) + (2) X «, we have
(1= a)f(x) + af (@) < f(2").

» For strict concavity, replace “<" with “<" (assuming x # z/).
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Proof (2/2)

» The “only if” part: Suppose that f is concave,
and fix any z € X and z € RN with 2 + 2z € X.

fz +1t2) — f(x)

> By Lemma 5.18, for t > 0, ;

t.

is decreasing in

[z +tz) — f(=)

» In particular, we have "

for t € (0,1].

> flx+2) — f(z)

> Let ¢t \(0. Then by the definition of differentiation,

(LHS) ~ gtf(ac—i-tz) o Vi(x+tz)- = o Vix)- -z

» For strict concavity, replace “>" with ">" (assuming z # 0).
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Characterization via Gradient

Let X ¢ RY be a nonempty open convex set.

Proposition 5.20
Suppose that f: X — R is differentiable.

» f is concave if and only if
(Vf@') = V(@) (2’ —2) <0
for all v, 2’ € X.

» f is strictly concave if and only if
(Vi) = Vi) (2 —2) <0

for all z,x' € X with x # 2.
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Proof (1/2)
» The “if" part:
Fix any 2 € X and z € RY with 2 + 2 € X.

> Let
9(t) = f(@ +t2) — f(z) = Vf(z) - (t2).
By Proposition 5.19, it suffices to show that g(1) < 0.
» For all t € (0, 1], we have
Jt)=Vf(x+tz)-2—Vf(z) 2
= (Vf(z+1t2) = Vf(z)) - (t2)/t <0
by assumption.
» Since g(0) = 0, it follows that g(1) < 0.

» For strict concavity, replace “<" with "<" (assuming z # 0).
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Proof (2/2)

> The “only if" part:

Suppose that f is concave, and fix any z,2’ € X.

» By Proposition 5.19, we have

f@) < f(@) + V(@) (@' —a),
fl@) < f(@) +Vf(@@) - (z —2).

» Combining these inequalities, we have

0< (V@)= Vf(@)) - (@ —a).

» For strict concavity, replace “<" with “<" (assuming x # 2/).
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Differentiability and Partial Differentiability

Let X c RN be a nonempty convex set.

Fact 1
Suppose that f: X — R is concave, and let T € Int X.
If %(55) exists for all i = 1,..., N, then f is differentiable at Z.

» This does not hold for general functions.
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Characterization via Hessian

Let X C RY be a nonempty open convex set.

Proposition 5.21
Suppose that f: X — R is differentiable and V f is differentiable.

» f is concave if and only if
for all z € X, D?f(x) is negative semi-definite, i.e.,

2-D?f(x)z <0
for all z € RN .
» If for all z € X, D?f(x) is negative definite, i.e.,
z-D*f(z)z <0

for all z £ 0, then f is strictly concave.
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Proof (1/2)

A\

The “if" part: Fix any z,2’ € X, and write 2 = 2/ — x.

> Let

g(t) = (Vf(z +1tz) = Vf(z))- 2
By Proposition 5.20, it suffices to show that g(1) < 0.

» Forall t € (0,1], we have
gt)=z-D*f(x+1t2)2<0

by assumption.

v

Since ¢g(0) = 0, it follows that ¢g(1) < 0.

» For strict concavity, replace “<"” with “<” (assuming = # z').
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Proof (2/2)
> The “only if" part:
Suppose that f is concave.

By Proposition 5.20,
(Vf(x') =V f(z)): (& —x) <0 forany z,2’ € X.

» Fix any z € X and z € RY, and consider the function
gty =Vf(x+tz)- 2
(defined for t such that x 4+ tz € X).
» By assumption, for t' > ¢, we have
(9(t) — g(O)(F 1
= (Vf(z+t'2)=Vf(z+tz))-{(z+t'2)—(z+t2)} <0,
which implies that g is nonincreasing.
» Therefore, ¢'(t) = 2 - D% f(x +tz)z < 0 for all t.
In particular, we have ¢’'(0) = z - D?f(z)z < 0.
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Quasi-Concave Functions

Definition 5.5
Let X C RY be a nonempty convex set.
> f: X — R is quasi-concave if
f(1 = o)z + aa’) > f(x)
for all z,2" € A such that f(2’) > f(z) and all a € [0,1].

> f: X — R is strictly quasi-concave if
7((1 - a)a +aa’) > f(x)
for all z, 2’ € A with z # 2/ such that f(2) > f(x) and all
a € (0,1).

» fis (strictly) quasi-convex if —f is (strictly) quasi-concave.
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Characterization via Gradient

Let X C RY be a nonempty open convex set.

Proposition 5.22
Suppose that f: X — R is differentiable.

1. f is quasi-concave if and only if for all z,x’ € X,
f@) = fx) = V() (@' —2) > 0.

2. If f is quasi-concave, then for all x,2' € X,

f@) > f(x), Vi(@) #0=Vf(@) (@' —2)>0.
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Proof

1. "Only if" part

» Suppose that f is quasi-concave.
Fix any z,2’ € X, and assume that f(2') > f(z).
Consider the function g(t) = f((1 — t)z + ta').

» By quasi-concavity, g(t) > ¢(0) for all ¢ € [0, 1].
» Therefore, ¢'(0) > 0, where ¢'(0) = Vf(x) - (' — ).
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Proof

1. “lf" part

» Suppose that f is not quasi-concave.
Then there exist 7,7’ € X, T # &', and @ € [0, 1] such that
f@) =z f(2) > (1 - )z + ax’).

» Consider the function g(t) = f((1 — )z + tT').

> Let M = minyp1)9(t) < g(0), and let

o =min{t € [0,1] | g(t) = M} (which is well defined by
the continuity of g).
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» By the continuity of g, there exists § > 0 such that
g(t) < g(0) for all t € (a* — §, ™).

» By the Mean Value Theorem, there exists o™ € (a* — §, a*)
such that ¢'(a**) = w <0.

» Therefore, letting 2** = (1 — &™)z + o™ %', we have

f@™) = g(a™) < g(0) = f(z) < f(2)

and

§(0™) = V() - (7~
1 kk —/ kk
zl_a**Vf(x ) (& —2™) <.

» This contradicts condition (3) (with z = 2** and 2’ = 7).
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» Suppose that f is quasi-concave and that f(z’) > f(x) and

Vf(x) # 0.

» By the continuity of f, we have f(z' — eV f(z)) > f(z) for
some small € > 0.

» Then by part 1, we have Vf(z) - ((2' —eVf(x)) —x) >0, or
V() (@' —2) > e|VF()]* > 0.
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Characterization via Gradient

Let X ¢ RY be a nonempty open convex set.

Proposition 5.23
Suppose that f: X — R is differentiable.
1. Ifforall z,2’ € X,

f@) = f@), 2 #£2' = V@)@ —a) >0,  (5)
then f is strictly quasi-concave.

2. If f is strictly quasi-concave, then for all z,x' € X,

f@) = f(x), 2 # 2/, Vf(x)#0
= Vf(x) (2’ —x)>0. (6)
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Proof

Suppose that condition (5) holds.
By part 1 of Proposition 5.22, f is quasi-concave.

Assume that f is not strictly quasi-concave.

Then there exist 7,7’ € X, T # T/, and @ € (0,1) such that
(@) > f(z) > f(@"), where " = (1 — &)z + az’ (# z,7').

Consider the function g(¢t) = f((1 — t)Z + t&’), which is
quasi-concave.

Since ¢g(0) > g(@), by part 1 of Proposition 5.22 we have
g (@)(0—a) >0, or ¢'(a) <0, where
J(@)=Vf@") (@ -z)=5Vf@") @ -a").

This contradicts condition (5) (with x = z” and 2’ = 7/).

49 /51



» Suppose that f is strictly quasi-concave and that

f(&) > f(z), w2, and Vf(z) # 0.
> By strict quasi-concavity, f (3z + %x’) > f(x).

» Then by part 2 of Proposition 5.22, we have
Vi) ((3z+32) —2) >0,0r iVf(2)- (' —2) > 0.
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Characterization via Hessian

Let X c RN be a nonempty open convex set.

Proposition 5.24
Suppose that f: X — R is differentiable and V f is differentiable.

» If f is quasi-concave, then for all x € X,
D?f(z) is negative semi-definite on {z € RN | Vf(x) -z = 0},
ie.,

z-D*f(x)z <0
for all z € RN with Vf(x)-z=0.

» [fforallxz € X,
D2 f(z) is negative definite on {z € RN | Vf(x)-2=0}, ie,

z-D*f(z)z <0

for all z # 0 with V f(x) -z =0, then f is strictly quasi-concave.
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