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Sequential Problem
Let X be a nonempty set.

We consider the following problem:

o0
max Y BF(ar, 7i) (+)
Tt

=0 =0
s.t. T4 eF(xt), t=20,1,...
xo € X : given,

where

> I': X — X is the nonempty-valued correspondence describing
the feasibility constraints,

> F': A — R is the one-period return function, where
A={(z,y) e X x X |y €T'(z)}, and

» 3 € (0,1) is the discount factor.
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» For each zy € X, we denote
I(xo) = {(x6)Zg | T141 € D'(ay), t=0,1,...}.

» We call elements of I1(xq) feasible paths from x.

» \We denote a typical element of II(xg) by

z = (x0,21,%2,...).
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Example: “Cake Eating”

Fix any Z > 0, and let X = [0, z].

Consider

max Zﬁuct
t=0

(ct)2o
s.t. ¢ € [O,LL‘t]
Tt4+1 = Tt — Cg, tIO,l,...

xo € X : given.
where we assume u(c) = 2¢® (a < 1,a # 0).

» I'(z) ={y € X |y =2 — c for some c € [0,z]} = [0, z].

> F(z,y) = u(z —y).
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Assumptions

Assumption 1

X is a subset of RV,
The feasibility correspondence I' is compact-valued and
upper and lower semi-continuous.

Assumption 2
The return function F' is continuous.

Assumption 3
The return function F' is bounded.

» Many typical examples from economics do not satisfy Assumption 3
without modification.

» Sometimes (but not always) one can restrict the state space X to
be a compact set.
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For x = (9, x1,...) € I(xg), we write

Uz) = ZﬁtF(l‘t, Ti41)-

t=0

Observation 1
For any zp € X and any x = (zo,x1,...) € I(xg),

t—1
Uz) = ZﬂTF(HJT,.I’T_H) + 5tU(£t)>
7=0

where 2! = (z4, 2441, ...) € I(xy).
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Optimal Value Function

> v*: X — R: optimal value function:

v*(xzg) = sup U(z) (o € X).
QEH(Z‘Q)

> v* is well defined and is a bounded function by Assumption 3
(bounded returns):

If |F(z,y)| < M for all (z,y) € A, then |[v*(z)] < M/(1—p)
for all x € X.
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Policy Functions

» A feasible policy function (or simply policy function, or policy)
is a function g: X — X such that g(x) € I'(z) for all z € X.

Denote by G the set of all feasible policy functions.

» For each zg € X, a policy function g generates a feasible path
from xg,

29 = (20, 9(20), 9°(w0), - ..) € (),

where g1 (z0) = g(g" (o)), t = 1,2, ...
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Policy Functions

» Define the policy value function v4 for g by

vg(xo) =U(2?) (x0 € X).

vg is a bounded function by Assumption 3 (bounded returns).

» g € G is an optimal policy function if vy(xg) = v*(z) for all
T € X.

» We will show that an optimal policy function exists.
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Bellman Operator

» Denote by B(X) the set of bounded functions from X — R,
and by Cp(X) the set of bounded and continuous functions
from X — R.

» Given a function v € B(X), define the function w: X — R by

w(z) = sup F(z,y)+ Bv(y).
y€el(z)

» w is bounded since F' and v are bounded, i.e., w € B(X).

» Denote this mapping v +— w by T, i.e.,

(Tw)(x) = sup F(z,y) + Bo(y).
y€el'(z)

This is a mapping from B(X) to B(X).

» This is called the Bellman Operator.
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Bellman Operator

» If v € B(X) is continuous, i.e., v € Cp(X), then the “sup” in
the definition of T is attained by the Extreme Value Theorem,
so that

(Tw)(z) = X, F(z,y) + Bo(y).

» In this case, Tv is a (bounded and) continuous function, i.e.,
Tv € Cyp(X), by the Theorem of Maximum.

» Thus, T(Cb(X)) C Cb(X)
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One-Period Return Operator

» Given a policy function g € G, define the operator
Ty: B(X) = B(X) by

(Tyv)(z) = F(z,9(x)) + Bu(g(z)).

(Tyv € B(X) whenever v € B(X) by the boundedness of F.)

11/52



The Operators
» Bellman operator:
T: B(X) — B(X) defined by:

(Tw)(xz) = sup F(x,y) + Bv(y).
y€el(z)

» For a policy g € G,
Ty: B(X) — B(X) defined by

(Tyv)(z) = F(z,9(x)) + Bu(g(z)).

» By definition, T,v < T'v.

» g is said to be v-greedy if Tyv = T'v.
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Monotonicity

Observation 2
T and T, are monotone,
ie., ifv<w, then

Tv <Tw,
Tyv < Tyw.
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Contraction

Observation 3
T and T, are contraction mappings with coefficient 5 € (0,1) for

d(v, w) = supzex|v(z) — w(z)|.
Proof
> Fix any z € X.

» Then we have
(Tw)(x) = sup F(z,y) + Blw(y) + (v(y) — w(y))]
y€el'(z)

< sup F(z,y) + Bw(y) + Bd(v, w)
y€el(z)

= (Tw)(x) + fd(v, w),
or, (Tw)(z) — (Tw)(x) < Bd(v,w).
» Similarly, we have (Tw)(z) — (Tv)(x) < Bd(v,w).
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Proposition 11.1
For any policy g € G:
1. vy is a fixed point of T,;; and

2. it is a unique fixed point of T.

Proof

1. For each xp € X,

vg(z0) = F(w0, 9(0))
+ BF(g(w0), 9% (20)) + B*F (g% (w0), g° (x0)) + - -
= F(w0, g(70)) + Bug(g(xo)).

2. - T, is a contraction mapping.
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Principle of Optimality

Proposition 11.2

1.
2.
3.

T has a unique fixed point in Cy(X).

The unique fixed point of T' equals v*.

*

g* is an optimal policy if and only if Ty«v* = Tv*.

g* is an optimal policy if and only if Ty«vg+ = Tvgx.

An optimal policy exists.
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Principle of Optimality

That is:

» The value function v* is a unique solution to
the Bellman equation

v(z) = max F(z,y) + Bu(y)
yel'(z)

on Cy(X), where the variable is a (continuous) function v.

> ¢* is an optimal policy if and only if ¢g* is v*-greedy
(also said to be conserving), i.e.,

9" () € argmax F'(z,y) + fv*(y)
y€el'(z)

for all x € X.
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» In another equivalent expression:

g* is an optimal policy if and only if g* is v «-greedy

(also said to be unimprovable), i.e.,

g (x) € argmax F(x,y) + fvg(y)
y€el'(z)

forall z € X.

(This is sometimes called the one-shot deviation principle.)

» Since v* is continuous, such a g* exists,
which generates an optimal path.

> Hence, we in fact have v*(z9) = max,ery(zy) U(2).
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Key Lemma

Lemma 11.3
Forv € B(X):

1. Ifv>Twv, then v > v*.
2. Ifv<Twv, thenv < v*.

3. If v is a fixed point of T, then it is a unique fixed point of T
and equals v*.
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Proof of Lemma 11.3

» Let v € B(X), and suppose that v > T'v.
» Take any z = (zg, z1,...) € II(x).

» For all ¢, we have

v(xe) > SU(P )F(xtvy) +Bv(y) > F(xg, xi41) + Bo(Tesr)-
yel'(xy

» Therefore we have

v(xg) > F(x0,21) + Bo(21)
> F(vo,21) + BF (21, 22) + B2v(x2)

T—
Z (zt, 2e41) + BT o (7).
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> Let T — 0.

Since v is bounded and 8 € (0,1), we have fTv(zr) — 0, so
that v(zo) > U(x).

» Since z has been taken arbitrarily, this implies that v > v*.
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» Let v € B(X), and suppose that v < T'v.

» Fix any € > 0 and any zp € X.

» Define z € II(xg) as follows:

For each t, let z441 € I'(x¢) be such that
(Tw)(@e) < F(we, @e41) + Po(es1) + (1= B)e,
so that
v(ze) < F(oy, 241) + fo(zegn) + (1= Pe.
Then we have
v(zo) < F(zo,21) + fv(x1) + (1 — P)e
< F(xo, 1) + BF (1,22) + f20(w2) + (1 + B)(1 - B)e

S

T-1

<Y B'F(z,we) + BT v(er) + Z A1~ Be.

t t=0

Il
=)
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> Let T — 0.

Since v is bounded and 8 € (0,1), we have fTv(zr) — 0, so
that v(zo) < U(z) +e.

» This implies that v(zg) < v*(xg) + € for all zy € X.

» Since ¢ > 0 has been taken arbitrarily, this implies that
v < 0¥,
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Proof of Proposition 11.2

1. [T has a unique fixed point in Cy(X).]

By the Contraction Mapping Fixed Point Theorem
(Proposition 10.9; see also the Remark there).

2. [The unique fixed point of T equals v*.]
By Lemma 11.3.
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3. [Principle of Optimality]
V* = g
= Typv* =v* (" vg is the unique fixed point of Ty-)
<= Tgv* =Tv* (" v* is a fixed point of T')

4. [One-Shot Deviation Principle]

V* = Vg
<= Twg =vg (. v* is the unique fixed point of T')
= Twvge = Tyevg (" vy~ is a fixed point of Tg+)

5. [Existence of optimal policy]

For each z € X, since F(z,-) and v* are continuous and I'(z)
is compact, ¢*(z) € I'(x) such that

F(z,g"(z)) + po*(g"(v)) = max, F(z,y) + Bv*(y)

exists by the Extreme Value Theorem.
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Value lteration

Proposition 11.4
For any vy € B(X),

d(T"vg,v") < f"d(vg,v*) (n=0,1,2,...),

so that T"vy converges uniformly to v* as n — oo.

Proof

» Since v* is a fixed point of T,

d(T"vg,v*) = d(T"vo, T"v™)
< Bd(Tn_l’Uo, Tn_lv*)

< B™d(vp,v™).

2652



Solution Algorithms

> Value iteration
» Policy iteration
> Modified policy iteration

» Linear programming
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e-Optimality

Let v* be the value function.
» v is a d-approximation of v* if d(v,v*) < 4.

» g is an e-optimal policy if v, is an e-approximation of v*.
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Error Bounds

Lemma 11.5
For any v,

d(v*,Tv) < l_ﬁﬁd(Tv, v).

Proof
> d(v*,Tv) < d(v*,T™v) 4+ d(T™v,Tv), where

3

Second term < d(TH Yy, T)

k=1
m—1
pB—p"
< 3" Brd(To,v) =
k=1 1-5

Let m — oo.

d(Tv,v).
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Lemma 11.6
For any v and any Tv-greedy policy g,

d(vg, Tv) < &d(Tv, v).

Proof
» Denote u = T.
Recall that vy = Tyvy and Tyu = T'u.
» Then,
d(vfb u) = Cl(Tg’Ug, u)

< d(Tyvg, Tu)+ d(Tu,u)
= d(Tyvg, Tyu) + d(Tw, Tv)
< Bd(vg,u) + Bd(u,v).

Rearranging terms yields the desired inequality.
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Proposition 11.7
For any v and any Tv-greedy policy g,

d(vg,v*) < Q_B/Bd(Tv v).
Proof

» By the previous two lemmas,

d(vg,v*) < d(vg, Tv) + d(Tv,v")
s 5

<13

(Tw,v).
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Value lteration with a Termination Condition

Specify € > 0.
1. Set n=0.
Choose any 2°.
2. Let o™l =T

3. If d(v™thon) < %6, then return © = v™*! and
a v-greedy policy g.

Otherwise, let n =n + 1 and go to Step 2.
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Proposition 11.8

Given an € > 0, the value iteration algorithm as described
terminates in a finite number of iterations, and

» ¢ is an e-optimal policy and

. . . N
» 0 is an 5-approximation of v*.

Proof

» By d(v"!,v™) — 0, Proposition 11.7, and Lemma 11.5.
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Policy lteration

1. Setn=0.
Choose any ¢°.
2. [Policy evaluation]

Compute the value vgn, i.e., the function v4n such that
’Ugn = Tgn’Ugn.

3. [Policy improvement]

Compute a vyn-greedy policy g"t1 ie., a g™ such that
Tgn+1 Ugn - Tvgn.

1_ . 5
4. 1If g"*t1 = g", then return § = ¢g" and © = vgn.

Otherwise, let n =n + 1 and go to Step 2.
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Proposition 11.9

Let {g™} be a sequence obtained by policy iteration.
1. 'Ugn S T'Ugn S ’Ugn+1,
2. Ty < wgn (S 0%).
3. vgn SV asn — o0,

4. If vgn = vynt1, then vgn = Tvgn and hence g" is optimal;

g
if vgn # Vgnt1, then vgn # Tvgn and hence g" is not optimal.
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Proof

1. Show vgn < Twgn < Vgn+1:

> We have
Vgn = Tynvgn (vgn is a fixed point of Tyn)
< Togn (Tyv < T for any v and g)
= Tynt+10gn (definition of g"*1).

> By the monotonicity of Tyn+1, it follows that

T

2 3 k
gn+11}gn S Tg”+1vgn S Tg"+1 Ugn S e S Tg"+1vgn.

> let k — o0.

. k k
Since for any v, Tgnﬂv — Vgnt1, We have Tgn+11}gn — Ugnt1.
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2. Show T"vg0 < vgn by induction:
» Trivial for n = 0.
» Assume that T"vgo < vgn holds.

» By the monotonicity of T', we have

n—+1
T vgo < Tygn.

> By 1, Tvgn < vgntr.
3. Since T"vgo — v*, we have vgn — v* by 2.

4. By 1.
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Proposition 11.10

Suppose that X is a finite set.
The policy iteration algorithm terminates in a finite number of

iterations, and § is an optimal policy and v is the optimal value.

Proof

» Because the values are nondecreasing by Proposition 11.9,
and there are finitely many possible policies when there are
finitely many states.

38/52



Policy Evaluation

» The value vy of a policy g" is a unique solution to

v = Tynv.

> If X has N elements, this is a system of N linear equations
with N variables.

.-+ Solvable (by a linear equation solver software).
> If N is huge, solving the equation can take much time.

. k
» Since Tgnﬂvgn — Ugn+1,

we have Tgknﬂvgn ~ v n+1 for large k.

g

» The version of policy iteration with this approximation is
called "modified” policy iteration.

» If k=1, then Tgknﬂvgn = Tvgn --- value iteration.
If & — oo, then T;n+1vgn — Ugnt1 -+ “exact” policy
iteration.
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Modified Policy lteration
Specify e > 0 and k£ > 1.

1. Set n=0.

Choose any v such that 700 > 9.

2. [Policy improvement]
Compute a v"-greedy policy ¢"*1, i.e., a ¢"*! such that

Tgn+1 v =Tv".

3. Compute u = Tv" (= Tynt10").

If d(u,v™) < %5, then return v and g"*+!.

Otherwise, go to Step 4.

4. [Partial policy evaluation]

Compute v = Tgknﬂu (= T:ﬂllv”).

Set n =n+ 1, and go to Step 2.
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Proposition 11.11
Let {(g",v™)} be a sequence obtained by modified policy iteration.
1. o™ < To" implies Tv™ < "1 < Tyntl,

2. " < o™t and T™Y < o™ < v*.

3. 0" /ot asn — .
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Proof

1. Suppose that v < Tv". Show that Tv" < vt < Tyl

> We have

vt < To" (assumption)

=Tynsrv" (definition of g"T1).

» By the monotonicity of Tyn+1, it follows that

Tw" = Tynerv" < T 0™ <o < Thpa0" < T’“j;ll n =t

> By T!fn“u” < v"*t! we also have

Tk“ﬁll " < Tynsrv™ ! (monotonicity of Tyn+1)

< Tyttt (T,v < Tw for any v and g).
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2. Since 10 < T by assumption, by 1 we have
W <T <ot <Tw? <,

In particular, we have v < v"*1 and Tw™ < v"t1.

From the latter, we have 770 < " by induction.

3. Since T"v" — v*, we have v — v* by 2.
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Linear Programming

» From Proposition 11.2 and Lemma 11.3,
> v* =Tw*, and

» if v > Tw, then v > v*.

» l.e., v* is the smallest function that satisfies v > Tw.
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Linear Programming
Suppose that X is a finite set.

» v* is a (unique) solution to the optimization problem:

min Z v(z)

veRIX] ex
s.t. v(x) > (Tv)(z) (forall xz € X),
where (Tv)(x) = maxyep(z) F(z,y) + Bu(y);

» or equivalently, to the linear program:

s.t. w(x) > F(x,y) + Bu(y) (for all (x,y) € A),
where A = {(z,y) e X x X |y e I'(x)}.
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Envelope Theorem

» We want to consider the derivatives of the value function v*,
X

ov
81:1- '
» Recall v* satisfies

v*(@) = max F(z,y)+ Bu(y).
y€el'(z)

» Write

G(r) = argmax F(z,y) + Bv*(y).
yel'(z)

» If the differentiability of v* is assumed
and if F'(-,y) is differentiable,

then it is a routine work to derive the envelope formula:

ov* oF .
0z (v) = 87%(%!/ )

for any y* € G(x).
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Envelope Theorem

» The issue is the differentiability of v*.

» A sufficient condition is that F'(z,y) is concave in (z,y),
with some additional conditions.

> We suppose that

> X C RY is convex; and
> A={(z,y) e X x X |y €T (z)} is convex.
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Concavity of v*

Proposition 11.12
If F' is concave, then v* is concave.
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Proof

» Suppose that v*(zg) > a and v*(z() > o'

We want to show that v*((1 — X)xg + Azfy) > (1 — Na + Ad'.
(Recall Problem ?? in Homework 3.)

» By definition, there exist z € II(zg) and 2’ € II(z{) such that
U(z) >aand U(2') > d'.

» Since F' is concave, we have

T
Z BUE((1 = Ny + Ay, (1= Naerr + Axgq)
t=0

T

T
>(1=A)>_ BF(ry,m41) + XY BTF(af, 1)

t=0 t=0

for all T'.
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» It follows that

MU (z) + AU (z)

U((1—=Nz+ M) > (1
> Na + Ad'.

(1

» Hence,

v (1= N)zo + Azj) > (1 — Na + A\d'.
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Differentiability of v*

Proposition 11.13
Suppose that

» [ is concave;
> 1z € Int X, v*(z0) < 00, y* € G(xp);

» for some neighborhood D C X of xg,
y* € I'(x) for all z € D; and
oF
al’i

>

(zo,y*) exists.

* * F
Then (;v (o) exists, and Ov (w0) = 67(1’079*)-
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Sometimes this proposition is called
the Benveniste-Scheinkman theorem.

Its main content is the differentiability of v*,

and not deriving the envelope formula, which is just a routine
once we have the differentiability

(as you have done in Problem ?? in Homework 7)!

An elementary proof is given by Milgrom and Segal (2002).

(— Problem ?? in Homework 7.)

See “On the Differentiability of the Value Function”
on the course webpage.
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