11. Dynamic Programming

Daisuke Oyama

Mathematics II

May 27, 2025

Sequential Problem

Let X be a nonempty set.

We consider the following problem:

$$\max_{\substack{(x_t)_{t=0}^{\infty}\\ \text{s.t.}}} \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1})$$

s.t. $x_{t+1} \in \Gamma(x_t), \quad t = 0, 1, \dots$
 $x_0 \in X : \text{given},$

where

- $\Gamma: X \to X$ is the nonempty-valued correspondence describing the feasibility constraints,
- ► $F: A \to \mathbb{R}$ is the one-period return function, where $A = \{(x, y) \in X \times X \mid y \in \Gamma(x)\}$, and

•
$$\beta \in (0,1)$$
 is the discount factor.

(*)

• We denote a typical element of $\Pi(x_0)$ by

$$\underline{x} = (x_0, x_1, x_2, \ldots).$$

Example: "Cake Eating"

Fix any
$$\bar{x} > 0$$
, and let $X = [0, \bar{x}]$.
Consider

$$\max_{\substack{(c_t)_{t=0}^{\infty}\\ s.t.}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

s.t. $c_t \in [0, x_t]$
 $x_{t+1} = x_t - c_t, \quad t = 0, 1, \dots$
 $x_0 \in X$: given.

where we assume $u(c) = \frac{1}{\alpha}c^{\alpha}$ ($\alpha < 1, \alpha \neq 0$).

•
$$\Gamma(x) = \{y \in X \mid y = x - c \text{ for some } c \in [0, x]\} = [0, x].$$

• $F(x, y) = u(x - y).$

Assumptions

Assumption 1

X is a subset of \mathbb{R}^N .

The feasibility correspondence Γ is compact-valued and upper and lower semi-continuous.

Assumption 2

The return function F is continuous.

Assumption 3

The return function F is bounded.

- Many typical examples from economics do not satisfy Assumption 3 without modification.
- Sometimes (but not always) one can restrict the state space X to be a compact set.

For
$$\underline{x} = (x_0, x_1, \ldots) \in \Pi(x_0)$$
, we write
$$U(\underline{x}) = \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1}).$$

Observation 1 For any $x_0 \in X$ and any $\underline{x} = (x_0, x_1, \ldots) \in \Pi(x_0)$,

$$U(\underline{x}) = \sum_{\tau=0}^{t-1} \beta^{\tau} F(x_{\tau}, x_{\tau+1}) + \beta^{t} U(\underline{x}^{t}),$$

where $\underline{x}^{t} = (x_{t}, x_{t+1}, ...) \in \Pi(x_{t}).$

Optimal Value Function

▶ $v^*: X \to \mathbb{R}$: optimal value function:

$$v^*(x_0) = \sup_{\underline{x} \in \Pi(x_0)} U(\underline{x}) \qquad (x_0 \in X).$$

 v* is well defined and is a bounded function by Assumption 3 (bounded returns):

If $|F(x,y)| \leq M$ for all $(x,y) \in A$, then $|v^*(x)| \leq M/(1-\beta)$ for all $x \in X$.

Policy Functions

- A feasible policy function (or simply policy function, or policy) is a function g: X → X such that g(x) ∈ Γ(x) for all x ∈ X. Denote by G the set of all feasible policy functions.
- For each x₀ ∈ X, a policy function g generates a feasible path from x₀,

$$\underline{x}^{g} = (x_0, g(x_0), g^2(x_0), \ldots) \in \Pi(x_0),$$

where $g^{t+1}(x_0) = g(g^t(x_0))$, t = 1, 2, ...

Policy Functions

• Define the *policy value function* v_g for g by

$$v_g(x_0) = U(\underline{x}^g) \quad (x_0 \in X).$$

 v_g is a bounded function by Assumption 3 (bounded returns).

- $g \in \mathcal{G}$ is an optimal policy function if $v_g(x_0) = v^*(x_0)$ for all $x_0 \in X$.
- ▶ We will show that an optimal policy function exists.

Bellman Operator

- Denote by B(X) the set of bounded functions from X → ℝ, and by C_b(X) the set of bounded and continuous functions from X → ℝ.
- Given a function $v \in \mathcal{B}(X)$, define the function $w \colon X \to \mathbb{R}$ by

$$w(x) = \sup_{y \in \Gamma(x)} F(x, y) + \beta v(y).$$

- w is bounded since F and v are bounded, i.e., $w \in \mathcal{B}(X)$.
- ▶ Denote this mapping $v \mapsto w$ by T, i.e.,

$$(Tv)(x) = \sup_{y \in \Gamma(x)} F(x, y) + \beta v(y).$$

This is a mapping from $\mathcal{B}(X)$ to $\mathcal{B}(X)$.

▶ This is called the *Bellman Operator*.

Bellman Operator

▶ If $v \in \mathcal{B}(X)$ is continuous, i.e., $v \in \mathcal{C}_b(X)$, then the "sup" in the definition of T is attained by the Extreme Value Theorem, so that

$$(Tv)(x) = \max_{y \in \Gamma(x)} F(x, y) + \beta v(y).$$

▶ In this case, Tv is a (bounded and) continuous function, i.e., $Tv \in C_b(X)$, by the Theorem of Maximum.

▶ Thus, $T(\mathcal{C}_b(X)) \subset \mathcal{C}_b(X)$.

One-Period Return Operator

• Given a policy function $g \in \mathcal{G}$, define the operator $T_g \colon \mathcal{B}(X) \to \mathcal{B}(X)$ by

$$(T_g v)(x) = F(x, g(x)) + \beta v(g(x)).$$

 $(T_g v \in \mathcal{B}(X)$ whenever $v \in \mathcal{B}(X)$ by the boundedness of F.)

The Operators

Bellman operator: $T: \mathcal{B}(X) \to \mathcal{B}(X)$ defined by: $(Tv)(x) = \sup F(x,y) + \beta v(y).$ $y \in \Gamma(x)$ For a policy $g \in \mathcal{G}$, $T_a: \mathcal{B}(X) \to \mathcal{B}(X)$ defined by $(T_q v)(x) = F(x, q(x)) + \beta v(q(x)).$

• By definition,
$$T_g v \leq T v$$
.

• g is said to be v-greedy if
$$T_g v = Tv$$
.

Monotonicity

Observation 2 T and T_g are monotone, i.e., if $v \le w$, then

$$Tv \le Tw,$$

$$T_g v \le T_g w.$$

Contraction

Observation 3 T and T_g are contraction mappings with coefficient $\beta \in (0,1)$ for $d(v,w) = \sup_{x \in X} |v(x) - w(x)|.$

Proof

Fix any
$$x \in X$$
.

Then we have

$$(Tv)(x) = \sup_{y \in \Gamma(x)} F(x, y) + \beta[w(y) + (v(y) - w(y))]$$

$$\leq \sup_{y \in \Gamma(x)} F(x, y) + \beta w(y) + \beta d(v, w)$$

$$= (Tw)(x) + \beta d(v, w),$$

or, $(Tv)(x) - (Tw)(x) \leq \beta d(v,w).$

• Similarly, we have $(Tw)(x) - (Tv)(x) \le \beta d(v, w)$.

Proposition 11.1

For any policy $g \in \mathcal{G}$:

1. v_g is a fixed point of T_g ; and

2. it is a unique fixed point of T_g .

Proof

1. For each $x_0 \in X$,

$$v_g(x_0) = F(x_0, g(x_0)) + \beta F(g(x_0), g^2(x_0)) + \beta^2 F(g^2(x_0), g^3(x_0)) + \cdots = F(x_0, g(x_0)) + \beta v_g(g(x_0)).$$

2. $\therefore T_g$ is a contraction mapping.

Principle of Optimality

Proposition 11.2

- 1. T has a unique fixed point in $C_b(X)$.
- 2. The unique fixed point of T equals v^* .
- 3. g^* is an optimal policy if and only if $T_{g^*}v^* = Tv^*$.
- 4. g^* is an optimal policy if and only if $T_{g^*}v_{g^*} = Tv_{g^*}$.
- 5. An optimal policy exists.

Principle of Optimality

That is:

The value function v* is a unique solution to the Bellman equation

$$v(x) = \max_{y \in \Gamma(x)} F(x, y) + \beta v(y)$$

on $\mathcal{C}_b(X)$, where the variable is a (continuous) function v.

 g* is an optimal policy if and only if g* is v*-greedy (also said to be *conserving*), i.e.,

$$g^*(x) \in \underset{y \in \Gamma(x)}{\arg \max} F(x, y) + \beta v^*(y)$$

for all $x \in X$.

In another equivalent expression:

 g^* is an optimal policy if and only if g^* is v_{g^*} -greedy (also said to be *unimprovable*), i.e.,

$$g^*(x) \in \underset{y \in \Gamma(x)}{\arg \max} F(x, y) + \beta v_{g^*}(y)$$

for all $x \in X$.

(This is sometimes called the one-shot deviation principle.)

- Since v* is continuous, such a g* exists, which generates an optimal path.
- Hence, we in fact have $v^*(x_0) = \max_{\underline{x} \in \Pi(x_0)} U(\underline{x})$.

Key Lemma

- Lemma 11.3 For $v \in \mathcal{B}(X)$:
 - 1. If $v \ge Tv$, then $v \ge v^*$.
 - 2. If $v \leq Tv$, then $v \leq v^*$.
 - 3. If v is a fixed point of T, then it is a unique fixed point of T and equals v^* .

Proof of Lemma 11.3

• Let $v \in \mathcal{B}(X)$, and suppose that $v \ge Tv$.

• Take any
$$\underline{x} = (x_0, x_1, \ldots) \in \Pi(x_0)$$
.

► For all *t*, we have

$$v(x_t) \ge \sup_{y \in \Gamma(x_t)} F(x_t, y) + \beta v(y) \ge F(x_t, x_{t+1}) + \beta v(x_{t+1}).$$

Therefore we have

$$v(x_{0}) \geq F(x_{0}, x_{1}) + \beta v(x_{1})$$

$$\geq F(x_{0}, x_{1}) + \beta F(x_{1}, x_{2}) + \beta^{2} v(x_{2})$$

:

$$\geq \sum_{t=0}^{T-1} \beta^{t} F(x_{t}, x_{t+1}) + \beta^{T} v(x_{T}).$$

• Let $T \to \infty$.

Since v is bounded and $\beta \in (0,1)$, we have $\beta^T v(x_T) \to 0$, so that $v(x_0) \ge U(\underline{x})$.

Since \underline{x} has been taken arbitrarily, this implies that $v \ge v^*$.

• Let $v \in \mathcal{B}(X)$, and suppose that $v \leq Tv$.

Fix any
$$\varepsilon > 0$$
 and any $x_0 \in X$.

• Define $\underline{x} \in \Pi(x_0)$ as follows:

For each t, let $x_{t+1} \in \Gamma(x_t)$ be such that

 $(Tv)(x_t) \le F(x_t, x_{t+1}) + \beta v(x_{t+1}) + (1 - \beta)\varepsilon,$

so that

$$v(x_t) \le F(x_t, x_{t+1}) + \beta v(x_{t+1}) + (1 - \beta)\varepsilon.$$

$$v(x_{0}) \leq F(x_{0}, x_{1}) + \beta v(x_{1}) + (1 - \beta)\varepsilon$$

$$\leq F(x_{0}, x_{1}) + \beta F(x_{1}, x_{2}) + \beta^{2} v(x_{2}) + (1 + \beta)(1 - \beta)\varepsilon$$

$$\vdots$$

$$\leq \sum_{t=0}^{T-1} \beta^{t} F(x_{t}, x_{t+1}) + \beta^{T} v(x_{T}) + \sum_{t=0}^{T-1} \beta^{t} (1 - \beta)\varepsilon.$$

• Let $T \to \infty$.

Since v is bounded and $\beta \in (0,1)$, we have $\beta^T v(x_T) \to 0$, so that $v(x_0) \leq U(\underline{x}) + \varepsilon$.

- This implies that $v(x_0) \le v^*(x_0) + \varepsilon$ for all $x_0 \in X$.
- Since $\varepsilon > 0$ has been taken arbitrarily, this implies that $v \le v^*$.

Proof of Proposition 11.2

- [T has a unique fixed point in C_b(X).]
 By the Contraction Mapping Fixed Point Theorem (Proposition 10.9; see also the Remark there).
- 2. [The unique fixed point of T equals v^* .] By Lemma 11.3.

3. [Principle of Optimality]

$$v^* = v_{g^*}$$

$$\iff T_{g^*}v^* = v^* (\because v_{g^*} \text{ is the unique fixed point of } T_{g^*})$$

$$\iff T_{g^*}v^* = Tv^* (\because v^* \text{ is a fixed point of } T)$$

4. [One-Shot Deviation Principle]

$$v^* = v_{g^*}$$

$$\iff Tv_{g^*} = v_{g^*} (:: v^* \text{ is the unique fixed point of } T)$$

$$\iff Tv_{g^*} = T_{g^*}v_{g^*} (:: v_{g^*} \text{ is a fixed point of } T_{g^*})$$

5. [Existence of optimal policy]

For each $x\in X,$ since $F(x,\cdot)$ and v^* are continuous and $\Gamma(x)$ is compact, $g^*(x)\in \Gamma(x)$ such that

$$F(x, g^{*}(x)) + \beta v^{*}(g^{*}(x)) = \max_{y \in \Gamma(x)} F(x, y) + \beta v^{*}(y)$$

exists by the Extreme Value Theorem.

Value Iteration

Proposition 11.4

For any $v_0 \in \mathcal{B}(X)$,

$$d(T^n v_0, v^*) \le \beta^n d(v_0, v^*) \quad (n = 0, 1, 2, \ldots),$$

so that $T^n v_0$ converges uniformly to v^* as $n \to \infty$.

Proof

Since
$$v^*$$
 is a fixed point of T ,

$$d(T^{n}v_{0}, v^{*}) = d(T^{n}v_{0}, T^{n}v^{*})$$

$$\leq \beta d(T^{n-1}v_{0}, T^{n-1}v^{*})$$

$$\vdots$$

$$\leq \beta^{n}d(v_{0}, v^{*}).$$

Solution Algorithms

- Value iteration
- Policy iteration
- Modified policy iteration
- Linear programming

ε -Optimality

Let v^* be the value function.

- v is a δ -approximation of v^* if $d(v, v^*) < \delta$.
- g is an ε -optimal policy if v_g is an ε -approximation of v^* .

Error Bounds

Lemma 11.5 For any v,

$$d(v^*, Tv) \le \frac{\beta}{1-\beta} d(Tv, v).$$

Proof

▶
$$d(v^*, Tv) \leq d(v^*, T^mv) + d(T^mv, Tv)$$
, where

Second term
$$\leq \sum_{k=1}^{m-1} d(T^{k+1}v, T^k v)$$
$$\leq \sum_{k=1}^{m-1} \beta^k d(Tv, v) = \frac{\beta - \beta^m}{1 - \beta} d(Tv, v).$$

Let $m \to \infty$.

Lemma 11.6

For any v and any Tv-greedy policy g,

$$d(v_g, Tv) \le \frac{\beta}{1-\beta} d(Tv, v).$$

Proof

▶ Denote u = Tv.

Recall that $v_g = T_g v_g$ and $T_g u = T u$.

Then,

$$\begin{split} d(v_g, u) &= d(T_g v_g, u) \\ &\leq d(T_g v_g, Tu) + d(Tu, u) \\ &= d(T_g v_g, T_g u) + d(Tu, Tv) \\ &\leq \beta d(v_g, u) + \beta d(u, v). \end{split}$$

Rearranging terms yields the desired inequality.

Proposition 11.7

For any v and any Tv-greedy policy g,

$$d(v_g, v^*) \le \frac{2\beta}{1-\beta} d(Tv, v).$$

Proof

By the previous two lemmas,

$$d(v_g, v^*) \le d(v_g, Tv) + d(Tv, v^*)$$
$$\le \frac{\beta}{1 - \beta} d(Tv, v) + \frac{\beta}{1 - \beta} d(Tv, v).$$

Value Iteration with a Termination Condition

Specify $\varepsilon > 0$.

1. Set n = 0.

Choose any v^0 .

- 2. Let $v^{n+1} = Tv^n$.
- 3. If $d(v^{n+1}, v^n) < \frac{1-\beta}{2\beta}\varepsilon$, then return $\hat{v} = v^{n+1}$ and a \hat{v} -greedy policy \hat{g} .

Otherwise, let n = n + 1 and go to Step 2.

Proposition 11.8

Given an $\varepsilon > 0$, the value iteration algorithm as described terminates in a finite number of iterations, and

 \blacktriangleright \hat{g} is an ε -optimal policy and

$$\triangleright$$
 \hat{v} is an $\frac{\varepsilon}{2}$ -approximation of v^* .

Proof

▶ By
$$d(v^{n+1}, v^n) \rightarrow 0$$
, Proposition 11.7, and Lemma 11.5.

Policy Iteration

- 1. Set n = 0. Choose any g^0 .
- 2. [Policy evaluation]

Compute the value $v_{g^n},$ i.e., the function v_{g^n} such that $v_{g^n}=T_{g^n}v_{g^n}.$

3. [Policy improvement]

Compute a $v_{g^n}\text{-}{\rm greedy}$ policy $g^{n+1},$ i.e., a g^{n+1} such that $T_{g^{n+1}}v_{g^n}=Tv_{g^n}.$

4. If $g^{n+1} = g^n$, then return $\hat{g} = g^n$ and $\hat{v} = v_{g^n}$.

Otherwise, let n = n + 1 and go to Step 2.

Proposition 11.9

Let $\{g^n\}$ be a sequence obtained by policy iteration.

1. $v_{g^n} \leq Tv_{g^n} \leq v_{g^{n+1}}$. 2. $T^n v_{g^0} \leq v_{g^n} \ (\leq v^*)$. 3. $v_{g^n} \nearrow v^* \text{ as } n \to \infty$. 4. If $v_{g^n} = v_{g^{n+1}}$, then $v_{g^n} = Tv_{g^n}$ and hence g^n is optimal; if $v_{q^n} \neq v_{q^{n+1}}$, then $v_{q^n} \neq Tv_{q^n}$ and hence g^n is not optimal.

Proof

1. Show
$$v_{g^n} \leq T v_{g^n} \leq v_{g^{n+1}}$$
:
 \blacktriangleright We have

$$\begin{split} v_{g^n} &= T_{g^n} v_{g^n} & (v_{g^n} \text{ is a fixed point of } T_{g^n}) \\ &\leq T v_{g^n} & (T_g v \leq T v \text{ for any } v \text{ and } g) \\ &= T_{g^{n+1}} v_{g^n} & (\text{definition of } g^{n+1}). \end{split}$$

• By the monotonicity of $T_{g^{n+1}}$, it follows that

$$T_{g^{n+1}}v_{g^n} \le T_{g^{n+1}}^2 v_{g^n} \le T_{g^{n+1}}^3 v_{g^n} \le \dots \le T_{g^{n+1}}^k v_{g^n}.$$

• Let $k \to \infty$.

Since for any $v,\,T^k_{g^{n+1}}v\to v_{g^{n+1}},$ we have $T^k_{g^{n+1}}v_{g^n}\to v_{g^{n+1}}.$

2. Show $T^n v_{g^0} \leq v_{g^n}$ by induction:

• Trivial for n = 0.

- Assume that $T^n v_{q^0} \leq v_{g^n}$ holds.
- By the monotonicity of T, we have

 $T^{n+1}v_{g^0} \le Tv_{g^n}.$

• By 1,
$$Tv_{g^n} \le v_{g^{n+1}}$$
.

3. Since
$$T^n v_{g^0} \rightarrow v^*$$
, we have $v_{g^n} \rightarrow v^*$ by 2.

4. By 1.

Proposition 11.10

Suppose that X is a finite set. The policy iteration algorithm terminates in a finite number of iterations, and \hat{q} is an optimal policy and \hat{v} is the optimal value.

Proof

Because the values are nondecreasing by Proposition 11.9, and there are finitely many possible policies when there are finitely many states.

Policy Evaluation

• The value v_{g^n} of a policy g^n is a unique solution to

$$v = T_{g^n} v.$$

- If X has N elements, this is a system of N linear equations with N variables.
 - ··· Solvable (by a linear equation solver software).
- ▶ If N is huge, solving the equation can take much time.

Since
$$T_{g^{n+1}}^k v_{g^n} \to v_{g^{n+1}}$$
,
we have $T_{g^{n+1}}^k v_{g^n} \approx v_{g^{n+1}}$ for large k .

The version of policy iteration with this approximation is called "modified" policy iteration.

▶ If
$$k = 1$$
, then $T_{g^{n+1}}^k v_{g^n} = Tv_{g^n} \cdots$ value iteration.
If $k \to \infty$, then $T_{g^{n+1}}^k v_{g^n} \to v_{g^{n+1}} \cdots$ "exact" policy iteration.

Modified Policy Iteration

Specify $\varepsilon > 0$ and $k \ge 1$.

1. Set
$$n = 0$$
.

Choose any v^0 such that $Tv^0 \ge v^0$.

2. [Policy improvement]

Compute a $v^n\mbox{-greedy}$ policy $g^{n+1},$ i.e., a g^{n+1} such that $T_{g^{n+1}}v^n=Tv^n.$

3. Compute $u = Tv^n$ (= $T_{g^{n+1}}v^n$).

If $d(u, v^n) < \frac{1-\beta}{2\beta}\varepsilon$, then return u and g^{n+1} . Otherwise, go to Step 4.

4. [Partial policy evaluation]

Compute $v^{n+1} = T^k_{g^{n+1}}u$ (= $T^{k+1}_{g^{n+1}}v^n$). Set n = n + 1, and go to Step 2.

Proposition 11.11

Let $\{(g^n, v^n)\}$ be a sequence obtained by modified policy iteration. 1. $v^n \leq Tv^n$ implies $Tv^n \leq v^{n+1} \leq Tv^{n+1}$.

2.
$$v^n \le v^{n+1}$$
 and $T^n v^0 \le v^n \le v^*$

3.
$$v^n \nearrow v^*$$
 as $n \to \infty$.

Proof

1. Suppose that $v^n \leq Tv^n$. Show that $Tv^n \leq v^{n+1} \leq Tv^{n+1}$.

We have

$$\begin{split} v^n &\leq T v^n & (\text{assumption}) \\ &= T_{g^{n+1}} v^n & (\text{definition of } g^{n+1}). \end{split}$$

2. Since $v^0 \leq Tv^0$ by assumption, by 1 we have $v^0 \leq Tv^0 \leq v^1 \leq Tv^2 \leq \cdots$.

In particular, we have $v^n \leq v^{n+1}$ and $Tv^n \leq v^{n+1}$.

From the latter, we have $T^n v^0 \leq v^n$ by induction.

3. Since
$$T^n v^0 \rightarrow v^*$$
, we have $v^n \rightarrow v^*$ by 2.

Linear Programming

From Proposition 11.2 and Lemma 11.3,

$$\blacktriangleright \ v^* = Tv^* \text{, and}$$

• if
$$v \ge Tv$$
, then $v \ge v^*$.

• I.e., v^* is the smallest function that satisfies $v \ge Tv$.

Linear Programming

Suppose that X is a finite set.

 \triangleright v^* is a (unique) solution to the optimization problem:

$$\begin{split} & \min_{v \in \mathbb{R}^{|X|}} \quad \sum_{x \in X} v(x) \\ & \text{s.t.} \quad v(x) \geq (Tv)(x) \quad (\text{for all } x \in X), \end{split}$$

where $(Tv)(x) = \max_{y \in \Gamma(x)} F(x, y) + \beta v(y)$;

or equivalently, to the linear program:

$$\begin{split} \min_{v\in\mathbb{R}^{|X|}} & \sum_{x\in X} v(x) \\ \text{s.t.} & v(x)\geq F(x,y)+\beta v(y) \quad (\text{for all } (x,y)\in A), \end{split}$$
 where $A=\{(x,y)\in X\times X\mid y\in \Gamma(x)\}.$

Envelope Theorem

 \blacktriangleright We want to consider the derivatives of the value function v^* , ∂v^*

 $\overline{\partial x_i}$.

Recall v* satisfies

$$v^*(x) = \max_{y \in \Gamma(x)} F(x, y) + \beta v^*(y).$$

Write

$$G(x) = \underset{y \in \Gamma(x)}{\arg \max} F(x, y) + \beta v^*(y).$$

If the differentiability of v* is assumed and if F(·, y) is differentiable, then it is a routine work to derive the envelope formula:

$$\frac{\partial v^*}{\partial x_i}(x) = \frac{\partial F}{\partial x_i}(x, y^*)$$

for any $y^* \in G(x)$.

Envelope Theorem

- ▶ The issue is the differentiability of *v*^{*}.
- ► A sufficient condition is that F(x, y) is concave in (x, y), with some additional conditions.
- We suppose that
 - $X \subset \mathbb{R}^N$ is convex; and
 - $A = \{(x, y) \in X \times X \mid y \in \Gamma(x)\}$ is convex.

Concavity of \boldsymbol{v}^*

Proposition 11.12 If F is concave, then v^* is concave.

Proof

Suppose that $v^*(x_0) > a$ and $v^*(x'_0) > a'$.

We want to show that $v^*((1-\lambda)x_0 + \lambda x_0') > (1-\lambda)a + \lambda a'$. (Recall Problem **??** in Homework 3.)

- ▶ By definition, there exist $\underline{x} \in \Pi(x_0)$ and $\underline{x}' \in \Pi(x'_0)$ such that $U(\underline{x}) > a$ and $U(\underline{x}') > a'$.
- ▶ Since *F* is concave, we have

$$\sum_{t=0}^{T} \beta^{t} F((1-\lambda)x_{t} + \lambda x_{t}', (1-\lambda)x_{t+1} + \lambda x_{t+1}')$$

$$\geq (1-\lambda)\sum_{t=0}^{T} \beta^{t} F(x_{t}, x_{t+1}) + \lambda \sum_{t=0}^{T} \beta^{t} F(x_{t}', x_{t+1}')$$

for all T.

$$U((1-\lambda)\underline{x} + \lambda \underline{x}') \ge (1-\lambda)U(\underline{x}) + \lambda U(\underline{x}')$$

> $(1-\lambda)a + \lambda a'.$

$$v^*((1-\lambda)x_0 + \lambda x_0') > (1-\lambda)a + \lambda a'.$$

Differentiability of \boldsymbol{v}^*

Proposition 11.13

Suppose that

► F is concave;

•
$$x_0 \in \operatorname{Int} X$$
, $v^*(x_0) < \infty$, $y^* \in G(x_0)$;

► for some neighborhood
$$D \subset X$$
 of x_0 ,
 $y^* \in \Gamma(x)$ for all $x \in D$; and

•
$$\frac{\partial F}{\partial x_i}(x_0, y^*)$$
 exists.
Then $\frac{\partial v^*}{\partial x_i}(x_0)$ exists, and $\frac{\partial v^*}{\partial x_i}(x_0) = \frac{\partial F}{\partial x_i}(x_0, y^*)$.

- Sometimes this proposition is called the Benveniste-Scheinkman theorem.
- Its main content is the differentiability of v*, and not deriving the envelope formula, which is just a routine once we have the differentiability (as you have done in Problem ?? in Homework 7)!
- An elementary proof is given by Milgrom and Segal (2002).

 $(\rightarrow$ Problem **??** in Homework 7.)

 See "On the Differentiability of the Value Function" on the course webpage.