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Sequential Problem
Let X be a nonempty set.

We consider the following problem:

max
(xt)∞t=0

∞∑
t=0

βtF (xt, xt+1) (∗)

s.t. xt+1 ∈ Γ(xt), t = 0, 1, . . .

x0 ∈ X : given,

where

▶ Γ: X → X is the nonempty-valued correspondence describing
the feasibility constraints,

▶ F : A → R is the one-period return function, where
A = {(x, y) ∈ X ×X | y ∈ Γ(x)}, and

▶ β ∈ (0, 1) is the discount factor.
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▶ For each x0 ∈ X, we denote

Π(x0) = {(xt)∞t=0 | xt+1 ∈ Γ(xt), t = 0, 1, . . .}.

▶ We call elements of Π(x0) feasible paths from x0.

▶ We denote a typical element of Π(x0) by

x = (x0, x1, x2, . . .).
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Example: “Cake Eating”

Fix any x̄ > 0, and let X = [0, x̄].

Consider

max
(ct)∞t=0

∞∑
t=0

βtu(ct)

s.t. ct ∈ [0, xt]

xt+1 = xt − ct, t = 0, 1, . . .

x0 ∈ X : given.

where we assume u(c) = 1
αc

α (α < 1, α 6= 0).

▶ Γ(x) = {y ∈ X | y = x− c for some c ∈ [0, x]} = [0, x].

▶ F (x, y) = u(x− y).
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Assumptions

Assumption 1

X is a subset of RN .
The feasibility correspondence Γ is compact-valued and
upper and lower semi-continuous.

Assumption 2

The return function F is continuous.

Assumption 3

The return function F is bounded.

▶ Many typical examples from economics do not satisfy Assumption 3
without modification.

▶ Sometimes (but not always) one can restrict the state space X to
be a compact set.
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For x = (x0, x1, . . .) ∈ Π(x0), we write

U(x) =

∞∑
t=0

βtF (xt, xt+1).

Observation 1
For any x0 ∈ X and any x = (x0, x1, . . .) ∈ Π(x0),

U(x) =
t−1∑
τ=0

βτF (xτ , xτ+1) + βtU(xt),

where xt = (xt, xt+1, . . .) ∈ Π(xt).
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Optimal Value Function

▶ v∗ : X → R: optimal value function:

v∗(x0) = sup
x∈Π(x0)

U(x) (x0 ∈ X).

▶ v∗ is well defined and is a bounded function by Assumption 3
(bounded returns):

If |F (x, y)| ≤ M for all (x, y) ∈ A, then |v∗(x)| ≤ M/(1− β)
for all x ∈ X.
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Policy Functions

▶ A feasible policy function (or simply policy function, or policy)
is a function g : X → X such that g(x) ∈ Γ(x) for all x ∈ X.

Denote by G the set of all feasible policy functions.

▶ For each x0 ∈ X, a policy function g generates a feasible path
from x0,

xg = (x0, g(x0), g
2(x0), . . .) ∈ Π(x0),

where gt+1(x0) = g(gt(x0)), t = 1, 2, . . ..
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Policy Functions

▶ Define the policy value function vg for g by

vg(x0) = U(xg) (x0 ∈ X).

vg is a bounded function by Assumption 3 (bounded returns).

▶ g ∈ G is an optimal policy function if vg(x0) = v∗(x0) for all
x0 ∈ X.

▶ We will show that an optimal policy function exists.
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Bellman Operator
▶ Denote by B(X) the set of bounded functions from X → R,

and by Cb(X) the set of bounded and continuous functions
from X → R.

▶ Given a function v ∈ B(X), define the function w : X → R by

w(x) = sup
y∈Γ(x)

F (x, y) + βv(y).

▶ w is bounded since F and v are bounded, i.e., w ∈ B(X).

▶ Denote this mapping v 7→ w by T , i.e.,

(Tv)(x) = sup
y∈Γ(x)

F (x, y) + βv(y).

This is a mapping from B(X) to B(X).

▶ This is called the Bellman Operator.
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Bellman Operator

▶ If v ∈ B(X) is continuous, i.e., v ∈ Cb(X), then the “sup” in
the definition of T is attained by the Extreme Value Theorem,
so that

(Tv)(x) = max
y∈Γ(x)

F (x, y) + βv(y).

▶ In this case, Tv is a (bounded and) continuous function, i.e.,
Tv ∈ Cb(X), by the Theorem of Maximum.

▶ Thus, T (Cb(X)) ⊂ Cb(X).
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One-Period Return Operator

▶ Given a policy function g ∈ G, define the operator
Tg : B(X) → B(X) by

(Tgv)(x) = F (x, g(x)) + βv(g(x)).

(Tgv ∈ B(X) whenever v ∈ B(X) by the boundedness of F .)
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The Operators

▶ Bellman operator:

T : B(X) → B(X) defined by:

(Tv)(x) = sup
y∈Γ(x)

F (x, y) + βv(y).

▶ For a policy g ∈ G,

Tg : B(X) → B(X) defined by

(Tgv)(x) = F (x, g(x)) + βv(g(x)).

▶ By definition, Tgv ≤ Tv.

▶ g is said to be v-greedy if Tgv = Tv.
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Monotonicity

Observation 2
T and Tg are monotone,
i.e., if v ≤ w, then

Tv ≤ Tw,

Tgv ≤ Tgw.
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Contraction
Observation 3
T and Tg are contraction mappings with coefficient β ∈ (0, 1) for
d(v, w) = supx∈X |v(x)− w(x)|.

Proof

▶ Fix any x ∈ X.

▶ Then we have

(Tv)(x) = sup
y∈Γ(x)

F (x, y) + β[w(y) + (v(y)− w(y))]

≤ sup
y∈Γ(x)

F (x, y) + βw(y) + βd(v, w)

= (Tw)(x) + βd(v, w),

or, (Tv)(x)− (Tw)(x) ≤ βd(v, w).

▶ Similarly, we have (Tw)(x)− (Tv)(x) ≤ βd(v, w).
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Proposition 11.1

For any policy g ∈ G:
1. vg is a fixed point of Tg; and

2. it is a unique fixed point of Tg.

Proof

1. For each x0 ∈ X,

vg(x0) = F (x0, g(x0))

+ βF (g(x0), g
2(x0)) + β2F (g2(x0), g

3(x0)) + · · ·
= F (x0, g(x0)) + βvg(g(x0)).

2. ∵ Tg is a contraction mapping.
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Principle of Optimality

Proposition 11.2

1. T has a unique fixed point in Cb(X).

2. The unique fixed point of T equals v∗.

3. g∗ is an optimal policy if and only if Tg∗v
∗ = Tv∗.

4. g∗ is an optimal policy if and only if Tg∗vg∗ = Tvg∗ .

5. An optimal policy exists.

16 / 52



Principle of Optimality

That is:

▶ The value function v∗ is a unique solution to
the Bellman equation

v(x) = max
y∈Γ(x)

F (x, y) + βv(y)

on Cb(X), where the variable is a (continuous) function v.

▶ g∗ is an optimal policy if and only if g∗ is v∗-greedy
(also said to be conserving), i.e.,

g∗(x) ∈ argmax
y∈Γ(x)

F (x, y) + βv∗(y)

for all x ∈ X.
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▶ In another equivalent expression:

g∗ is an optimal policy if and only if g∗ is vg∗-greedy
(also said to be unimprovable), i.e.,

g∗(x) ∈ argmax
y∈Γ(x)

F (x, y) + βvg∗(y)

for all x ∈ X.

(This is sometimes called the one-shot deviation principle.)

▶ Since v∗ is continuous, such a g∗ exists,
which generates an optimal path.

▶ Hence, we in fact have v∗(x0) = maxx∈Π(x0) U(x).
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Key Lemma

Lemma 11.3
For v ∈ B(X):

1. If v ≥ Tv, then v ≥ v∗.

2. If v ≤ Tv, then v ≤ v∗.

3. If v is a fixed point of T , then it is a unique fixed point of T
and equals v∗.
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Proof of Lemma 11.3
▶ Let v ∈ B(X), and suppose that v ≥ Tv.

▶ Take any x = (x0, x1, . . .) ∈ Π(x0).

▶ For all t, we have

v(xt) ≥ sup
y∈Γ(xt)

F (xt, y)+βv(y) ≥ F (xt, xt+1)+βv(xt+1).

▶ Therefore we have

v(x0) ≥ F (x0, x1) + βv(x1)

≥ F (x0, x1) + βF (x1, x2) + β2v(x2)

...

≥
T−1∑
t=0

βtF (xt, xt+1) + βT v(xT ).
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▶ Let T → ∞.

Since v is bounded and β ∈ (0, 1), we have βT v(xT ) → 0, so
that v(x0) ≥ U(x).

▶ Since x has been taken arbitrarily, this implies that v ≥ v∗.
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▶ Let v ∈ B(X), and suppose that v ≤ Tv.

▶ Fix any ε > 0 and any x0 ∈ X.

▶ Define x ∈ Π(x0) as follows:

For each t, let xt+1 ∈ Γ(xt) be such that

(Tv)(xt) ≤ F (xt, xt+1) + βv(xt+1) + (1− β)ε,

so that

v(xt) ≤ F (xt, xt+1) + βv(xt+1) + (1− β)ε.

▶ Then we have

v(x0) ≤ F (x0, x1) + βv(x1) + (1− β)ε

≤ F (x0, x1) + βF (x1, x2) + β2v(x2) + (1 + β)(1− β)ε

...

≤
T−1∑
t=0

βtF (xt, xt+1) + βT v(xT ) +

T−1∑
t=0

βt(1− β)ε.
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▶ Let T → ∞.

Since v is bounded and β ∈ (0, 1), we have βT v(xT ) → 0, so
that v(x0) ≤ U(x) + ε.

▶ This implies that v(x0) ≤ v∗(x0) + ε for all x0 ∈ X.

▶ Since ε > 0 has been taken arbitrarily, this implies that
v ≤ v∗.
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Proof of Proposition 11.2

1. [T has a unique fixed point in Cb(X).]

By the Contraction Mapping Fixed Point Theorem
(Proposition 10.9; see also the Remark there).

2. [The unique fixed point of T equals v∗.]

By Lemma 11.3.
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3. [Principle of Optimality]

v∗ = vg∗

⇐⇒ Tg∗v
∗ = v∗ (∵ vg∗ is the unique fixed point of Tg∗)

⇐⇒ Tg∗v
∗ = Tv∗ (∵ v∗ is a fixed point of T )

4. [One-Shot Deviation Principle]

v∗ = vg∗

⇐⇒ Tvg∗ = vg∗ (∵ v∗ is the unique fixed point of T )
⇐⇒ Tvg∗ = Tg∗vg∗ (∵ vg∗ is a fixed point of Tg∗)

5. [Existence of optimal policy]

For each x ∈ X, since F (x, ·) and v∗ are continuous and Γ(x)
is compact, g∗(x) ∈ Γ(x) such that

F (x, g∗(x)) + βv∗(g∗(x)) = max
y∈Γ(x)

F (x, y) + βv∗(y)

exists by the Extreme Value Theorem.
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Value Iteration

Proposition 11.4

For any v0 ∈ B(X),

d(Tnv0, v
∗) ≤ βnd(v0, v

∗) (n = 0, 1, 2, . . .),

so that Tnv0 converges uniformly to v∗ as n → ∞.

Proof

▶ Since v∗ is a fixed point of T ,

d(Tnv0, v
∗) = d(Tnv0, T

nv∗)

≤ βd(Tn−1v0, T
n−1v∗)

...

≤ βnd(v0, v
∗).
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Solution Algorithms

▶ Value iteration

▶ Policy iteration

▶ Modified policy iteration

▶ Linear programming

27 / 52



ε-Optimality

Let v∗ be the value function.

▶ v is a δ-approximation of v∗ if d(v, v∗) < δ.

▶ g is an ε-optimal policy if vg is an ε-approximation of v∗.
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Error Bounds

Lemma 11.5
For any v,

d(v∗, T v) ≤ β

1− β
d(Tv, v).

Proof

▶ d(v∗, T v) ≤ d(v∗, Tmv) + d(Tmv, Tv), where

Second term ≤
m−1∑
k=1

d(T k+1v, T kv)

≤
m−1∑
k=1

βkd(Tv, v) =
β − βm

1− β
d(Tv, v).

Let m → ∞.
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Lemma 11.6
For any v and any Tv-greedy policy g,

d(vg, T v) ≤
β

1− β
d(Tv, v).

Proof

▶ Denote u = Tv.

Recall that vg = Tgvg and Tgu = Tu.

▶ Then,

d(vg, u) = d(Tgvg, u)

≤ d(Tgvg, Tu) + d(Tu, u)

= d(Tgvg, Tgu) + d(Tu, Tv)

≤ βd(vg, u) + βd(u, v).

Rearranging terms yields the desired inequality.
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Proposition 11.7

For any v and any Tv-greedy policy g,

d(vg, v
∗) ≤ 2β

1− β
d(Tv, v).

Proof

▶ By the previous two lemmas,

d(vg, v
∗) ≤ d(vg, T v) + d(Tv, v∗)

≤ β

1− β
d(Tv, v) +

β

1− β
d(Tv, v).

31 / 52



Value Iteration with a Termination Condition

Specify ε > 0.

1. Set n = 0.

Choose any v0.

2. Let vn+1 = Tvn.

3. If d(vn+1, vn) < 1−β
2β ε, then return v̂ = vn+1 and

a v̂-greedy policy ĝ.

Otherwise, let n = n+ 1 and go to Step 2.
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Proposition 11.8

Given an ε > 0, the value iteration algorithm as described
terminates in a finite number of iterations, and

▶ ĝ is an ε-optimal policy and

▶ v̂ is an ε
2 -approximation of v∗.

Proof

▶ By d(vn+1, vn) → 0, Proposition 11.7, and Lemma 11.5.
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Policy Iteration

1. Set n = 0.

Choose any g0.

2. [Policy evaluation]

Compute the value vgn , i.e., the function vgn such that
vgn = Tgnvgn .

3. [Policy improvement]

Compute a vgn-greedy policy gn+1, i.e., a gn+1 such that
Tgn+1vgn = Tvgn .

4. If gn+1 = gn, then return ĝ = gn and v̂ = vgn .

Otherwise, let n = n+ 1 and go to Step 2.

34 / 52



Proposition 11.9

Let {gn} be a sequence obtained by policy iteration.

1. vgn ≤ Tvgn ≤ vgn+1 .

2. Tnvg0 ≤ vgn (≤ v∗).

3. vgn ↗ v∗ as n → ∞.

4. If vgn = vgn+1 , then vgn = Tvgn and hence gn is optimal;

if vgn 6= vgn+1 , then vgn 6= Tvgn and hence gn is not optimal.
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Proof

1. Show vgn ≤ Tvgn ≤ vgn+1 :

▶ We have

vgn = Tgnvgn (vgn is a fixed point of Tgn)

≤ Tvgn (Tgv ≤ Tv for any v and g)

= Tgn+1vgn (definition of gn+1).

▶ By the monotonicity of Tgn+1 , it follows that

Tgn+1vgn ≤ T 2
gn+1vgn ≤ T 3

gn+1vgn ≤ · · · ≤ T k
gn+1vgn .

▶ Let k → ∞.

Since for any v, T k
gn+1v → vgn+1 , we have T k

gn+1vgn → vgn+1 .
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2. Show Tnvg0 ≤ vgn by induction:

▶ Trivial for n = 0.

▶ Assume that Tnvg0 ≤ vgn holds.

▶ By the monotonicity of T , we have

Tn+1vg0 ≤ Tvgn .

▶ By 1, Tvgn ≤ vgn+1 .

3. Since Tnvg0 → v∗, we have vgn → v∗ by 2.

4. By 1.
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Proposition 11.10

Suppose that X is a finite set.
The policy iteration algorithm terminates in a finite number of
iterations, and ĝ is an optimal policy and v̂ is the optimal value.

Proof

▶ Because the values are nondecreasing by Proposition 11.9,
and there are finitely many possible policies when there are
finitely many states.
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Policy Evaluation
▶ The value vgn of a policy gn is a unique solution to

v = Tgnv.

▶ If X has N elements, this is a system of N linear equations
with N variables.

· · · Solvable (by a linear equation solver software).

▶ If N is huge, solving the equation can take much time.

▶ Since T k
gn+1vgn → vgn+1 ,

we have T k
gn+1vgn ≈ vgn+1 for large k.

▶ The version of policy iteration with this approximation is
called “modified” policy iteration.

▶ If k = 1, then T k
gn+1vgn = Tvgn · · · value iteration.

If k → ∞, then T k
gn+1vgn → vgn+1 · · · “exact” policy

iteration.
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Modified Policy Iteration
Specify ε > 0 and k ≥ 1.

1. Set n = 0.

Choose any v0 such that Tv0 ≥ v0.

2. [Policy improvement]

Compute a vn-greedy policy gn+1, i.e., a gn+1 such that
Tgn+1vn = Tvn.

3. Compute u = Tvn (= Tgn+1vn).

If d(u, vn) < 1−β
2β ε, then return u and gn+1.

Otherwise, go to Step 4.

4. [Partial policy evaluation]

Compute vn+1 = T k
gn+1u (= T k+1

gn+1v
n).

Set n = n+ 1, and go to Step 2.
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Proposition 11.11

Let {(gn, vn)} be a sequence obtained by modified policy iteration.

1. vn ≤ Tvn implies Tvn ≤ vn+1 ≤ Tvn+1.

2. vn ≤ vn+1 and Tnv0 ≤ vn ≤ v∗.

3. vn ↗ v∗ as n → ∞.
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Proof

1. Suppose that vn ≤ Tvn. Show that Tvn ≤ vn+1 ≤ Tvn+1.

▶ We have

vn ≤ Tvn (assumption)

= Tgn+1vn (definition of gn+1).

▶ By the monotonicity of Tgn+1 , it follows that

Tvn = Tgn+1vn ≤ T 2
gn+1vn ≤ · · · ≤ T k

gn+1vn ≤ T k+1
gn+1v

n = vn+1.

▶ By T k
gn+1vn ≤ vn+1, we also have

vn+1 = T k+1
gn+1v

n ≤ Tgn+1vn+1 (monotonicity of Tgn+1)

≤ Tvn+1 (Tgv ≤ Tv for any v and g).
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2. Since v0 ≤ Tv0 by assumption, by 1 we have
v0 ≤ Tv0 ≤ v1 ≤ Tv2 ≤ · · · .

In particular, we have vn ≤ vn+1 and Tvn ≤ vn+1.

From the latter, we have Tnv0 ≤ vn by induction.

3. Since Tnv0 → v∗, we have vn → v∗ by 2.
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Linear Programming

▶ From Proposition 11.2 and Lemma 11.3,

▶ v∗ = Tv∗, and

▶ if v ≥ Tv, then v ≥ v∗.

▶ I.e., v∗ is the smallest function that satisfies v ≥ Tv.
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Linear Programming

Suppose that X is a finite set.

▶ v∗ is a (unique) solution to the optimization problem:

min
v∈R|X|

∑
x∈X

v(x)

s. t. v(x) ≥ (Tv)(x) (for all x ∈ X),

where (Tv)(x) = maxy∈Γ(x) F (x, y) + βv(y);

▶ or equivalently, to the linear program:

min
v∈R|X|

∑
x∈X

v(x)

s. t. v(x) ≥ F (x, y) + βv(y) (for all (x, y) ∈ A),

where A = {(x, y) ∈ X ×X | y ∈ Γ(x)}.
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Envelope Theorem
▶ We want to consider the derivatives of the value function v∗,

∂v∗

∂xi
.

▶ Recall v∗ satisfies

v∗(x) = max
y∈Γ(x)

F (x, y) + βv∗(y).

▶ Write

G(x) = argmax
y∈Γ(x)

F (x, y) + βv∗(y).

▶ If the differentiability of v∗ is assumed
and if F (·, y) is differentiable,
then it is a routine work to derive the envelope formula:

∂v∗

∂xi
(x) =

∂F

∂xi
(x, y∗)

for any y∗ ∈ G(x).
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Envelope Theorem

▶ The issue is the differentiability of v∗.

▶ A sufficient condition is that F (x, y) is concave in (x, y),
with some additional conditions.

▶ We suppose that

▶ X ⊂ RN is convex; and

▶ A = {(x, y) ∈ X ×X | y ∈ Γ(x)} is convex.
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Concavity of v∗

Proposition 11.12

If F is concave, then v∗ is concave.
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Proof

▶ Suppose that v∗(x0) > a and v∗(x′0) > a′.

We want to show that v∗((1− λ)x0 + λx′0) > (1− λ)a+ λa′.
(Recall Problem ?? in Homework 3.)

▶ By definition, there exist x ∈ Π(x0) and x′ ∈ Π(x′0) such that
U(x) > a and U(x′) > a′.

▶ Since F is concave, we have

T∑
t=0

βtF ((1− λ)xt + λx′t, (1− λ)xt+1 + λx′t+1)

≥ (1− λ)

T∑
t=0

βtF (xt, xt+1) + λ

T∑
t=0

βtF (x′t, x
′
t+1)

for all T .
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▶ It follows that

U((1− λ)x+ λx′) ≥ (1− λ)U(x) + λU(x′)

> (1− λ)a+ λa′.

▶ Hence,

v∗((1− λ)x0 + λx′0) > (1− λ)a+ λa′.
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Differentiability of v∗

Proposition 11.13

Suppose that

▶ F is concave;

▶ x0 ∈ IntX, v∗(x0) < ∞, y∗ ∈ G(x0);

▶ for some neighborhood D ⊂ X of x0,
y∗ ∈ Γ(x) for all x ∈ D; and

▶ ∂F

∂xi
(x0, y

∗) exists.

Then
∂v∗

∂xi
(x0) exists, and

∂v∗

∂xi
(x0) =

∂F

∂xi
(x0, y

∗).
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▶ Sometimes this proposition is called
the Benveniste-Scheinkman theorem.

▶ Its main content is the differentiability of v∗,
and not deriving the envelope formula, which is just a routine
once we have the differentiability
(as you have done in Problem ?? in Homework 7)!

▶ An elementary proof is given by Milgrom and Segal (2002).

(→ Problem ?? in Homework 7.)

▶ See “On the Differentiability of the Value Function”
on the course webpage.
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