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Parameterized Optimization (with Constant Constraints)
Let X C RY be a nonempty set, A C R a nonempty open set.

For f: X x A — R, consider the optimal value function

v(q) = sup f(x,q),
zeX

and the optimal solution correspondence

X*(q) ={z e X | f(z,9) = v(a)}-
We assume that X*(q) # 0 for all ¢ € A.

We want to investigate the marginal effects of changes in ¢
on the value v(q).
Formally, the envelope theorem gives

1. a sufficient condition under which v is differentiable, and

2. a formula for the derivative (“envelope formula™).
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Outline

» Envelope formula is best interpreted through FOC under
the differentiability of the solution function (or selection) and
the differentiability of f in (z,q),

while these assumptions are irrelevant for the differentiability
of v and deriving the formula.

> If we directly assume the differentiability of v, deriving
the envelope formula is just a straightforward routine.

Differentiability of v is the real content of envelope theorem.

» Non-differentiability of v is a typical case when there are more
than one solutions.

» Provide a sufficient condition under which uniqueness of
solution implies differentiability of v,

with applications for the differentiability of support function
(or profit function), indirect utility function, and expenditure

function.
2/34



Main Reference

» D. Oyama and T. Takenawa, “On the (Non-)Differentiability
of the Optimal Value Function When the Optimal Solution Is

Unique,” Journal of Mathematical Economics 76, 21-32
(2018).
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Envelope Theorem via FOC

Proposition 9.1

Let x(-) be a selection of X*,
i.e., a function such that x(q) € X*(q) for all ¢ € A.

Assume that
1. f is differentiable on Int X x A, and

2. z(q) € Int X, and x(-) is differentiable at q.
Then, v is differentiable at q, and

0 0
@)= @) 5= 1S
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Proof

» By the assumptions, v(q)

» We have

v
9qs

(q) =

= f(z(q), q) is differentiable at q.

aif(iﬂ((]% Q)’q:q
f axn af N
Zn: T 8 m (q) + 4. (2(9),9)
=0 by FOC
4. (2(),9)-

» The change in the solution caused by the change in ¢ has
no first-order effect on the value;

> the only effect

is the direct effect.
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A Sufficient Condition for the Differentiability of z(-)

Proposition 9.2
Assume that

1. X is compact and f is continuous,

2. foreach g€ A, X*(q) = {z(q)} C Int X,

3. V. f exists and is continuously differentiable on Int X x A,
and

4. |D;f(x(q),q)| # 0.
Then, x(+) is continuously differentiable on a neighborhood of q.
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Proof

By assumptions, x(-) is continuous by the Theorem of
Maximum.

By the FOC, V. f(z(q),q) =0 for all ¢ € A.

By assumptions, V. f(z,q) = 0 is uniquely solved locally as
x =n(q) and 7 is continuously differentiable by the Implicit
Function Theorem.

l.e., there exist open neighborhoods U and V' of z(g) and g,
respectively, such that V, f(z,q) = 0 if and only if z = n(q).

By the continuity of x(-), there exists an open neighborhood
V' C V of g such that z(q) € U for all g € V.

By the FOC V. f(z(q),q) = 0, it follows that z(q) = n(q) for
allge V.
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Envelope Formula

If we directly assume the differentiability of the value function v,
neither the differentiability of f(z,q) in = nor that of x(q) in ¢ is
needed in deriving the envelope formula.

Proposition 9.3
Assume that

1. forallx € X, f(x,-) is differentiable at q, and

2. v is differentiable at q.
Then, for any & € X*(q),

oo, of
9qs (q) B dqs («T;Q);
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Proof
» Fix any 7 € X*(q).

» Define the function

9(q) = f(Z,q) — v(q).
By assumption, g is differentiable at q.
» By definition,
» g(q) <O0forall g€ A, and
> 9(q) = 0.
» Thus, g is maximized at ¢, so that by FOC we have

dg af ov

Ozaqs(q) 8%( ,q) — aqS(Q)-
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Example: Non-Differentiable Value Function
Consider

14 g5 1, 1
[z, q) = 1% Ty T ter— g, q € [-1,1],

where f,(z,q) = —(z + 1)(z + g)( — 1).

Then we have

{-1} if ¢ <0,
lql,  X*(¢) = {{-1,1} ifg=0,
{1} if ¢ > 0.

> At ¢ =0, v is not differentiable, and

» there are two optimal solutions.
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A Sufficient Condition for Differentiability of v

Proposition 9.4
Assume that

1. X* has a selection x(-) continuous at q, and

2. forall x € X, f(x,-) is differentiable, and ¥V, f is continuous

in (z,q).
Then v is differentiable at ¢ with
ov , . Of

aqs(Q)—aqs(x((j)vg)v s=1,...,5

Proof
See: Oyama and Takenawa, Proposition A.1.
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Corollary 9.5
Assume that

1. X* is upper semi-continuous with X*(q) # 0 for all ¢ € A,
2. X*(q) ={z}, and

3. forall x € X, f(z,-) is differentiable, and V ,f is continuous

in (z,q).
Then v is differentiable at ¢ with
ov of
q) = T,q =1,...,5.
aqs (Q) 3(]5 (17, Q)a S ) 9

12/34



Proof

» Assumptions 1 and 2 imply that any selection of X ™ is
continuous at §.

» Thus the conclusion follows from Proposition 9.4.

Remark

» A sufficient condition for Assumption 1 is that X is compact
and f is continuous, due to the Theorem of the Maximum.
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Example: Non-Differentiable Value Function

» Even if an optimal solution is unique, the value function may
not be differentiable.

» In fact, there exists a continuous function f: X x A - R
such that

1. X*(q) is a singleton for all g and is continuous in ¢
(as a single-valued function), and

2. f is differentiable in g,

but v is not differentiable at some ¢.

See: Oyama and Takenawa, Example 2.1.
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Differentiability of the Support Function

For K C RY, K # 0, and p € RY, consider the support function
of K,

K (p) = SUp p - 7,
xT

and the optimal solution correspondence,

Sk(p)={zeRY |z e K, ng(p)=p- z}.

If K is the production set of a firm, 7w is the profit function and Sk is
the supply correspondence (defined for all p € RY).

» If K is closed and convex and if Sk (p) is nonempty and
bounded, then there exists an open neighborhood P° of
such that Sk is nonempty-valued and upper semi-continuous
on P (Proposition 3.18)
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Proposition 9.6

Let K C RN be a nonempty closed convex set, and
7 RN — (—00, 00] its support function, i.e.,

Tk (P) = SUPyer P - -

Let p € RN be such that mx(p) < co.

Then g is differentiable at p if and only if

there is a unique T € K such that mx(p) =p - T.
In this case, Vg (p) = .
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Proof

“If" part

» By the closedness and convexity of K # (), it follows from
Proposition 3.18 that there exists an open neighborhood P
of p such that Sk is nonempty-valued and upper
semi-continuous on PY.

» The function f(x,p) = p- x is differentiable in p, and
V,f(x,p) = x is continuous in (z,p).

» With Sk (p) = {z}, the conclusion follows from Corollary 9.5.
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Proof

“Only if” part

>

>

By the definition, Sk (p) C Onk(p).

Since 7k is convex, the differentiability of mx at p implies
Ok (p) = {Vrr(p)}-

The nonemptiness of Sk (p) follows from the differentiability
of mx by an elementary argument under the closedness of K
(see Oyama and Takenawa, Lemma A.5).

Hence, Sk (p) is a singleton.

By the differentiability of 7mx, we have
V7rk (D) = Vp(p- 2)|p=pa=z = T for all T € Sk (p).
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The convexity of K can be dropped if K is compact,
in which case Co K is closed.

Corollary 9.7

Let K C RN be a nonempty compact set.

Then w is differentiable at p if and only if
there is a unique T € K such that mx(p) =p - Z.
In this case, V7 (p) = .
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Proof

» Show that Sco x = Co Sk.
» Co K is nonempty and closed if K is nonempty and compact.

» Therefore, it follows from Proposition 9.6 that

T = oo Kk IS differentiable at p
<= Scok(p) = CoSk(p) is a singleton
<= Sk(p) is a singleton,

in which case Sk (p) = {V7k(p)}.
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Differentiability of the Indirect Utility Function

For p € RL and w € Ry, consider the indirect utility function,

v(p, w) = sup{u(z) | 2 € B(p, w)},
and the Walrasian demand correspondence,

z(p,w) = {x € RY | 2 € B(p,w), u(z) = v(p,w)},
where B(p,w) = {z e RY | p-z < w}.

» If u is continuous, then x is nonempty- and compact-valued
and upper semi-continuous.

(Proposition 3.16)
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Proposition 9.8
Assume that

1. w is locally insatiable and continuous,
2. z(p,w) = {x}, and

3. for some j with z; > 0 and for some neighborhoods X]O and
ng of Z; and T_; in Ry and Rffl, respectively, (‘(997“]- exists
on X9 x XY, and is continuous in x at I.

Then v is differentiable at (p,w) with

v (5, @) z%j(f)f ov (5, @) 597%(37)
Yy W)= ———""Lij, [ \PpW)=—"""

for any j satisfying the condition in 3.
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Proof (1/3)
» By the local insatiability, the inequality constraint p-x < w
can be replaced by the equality constraint p -z = w.
» Let x(p, w) = {Z}, where p- T = w.
> Let j, X7, and X°; be as in Assumption 3, where
Tj =g (w - Z#jpm> € Xj.
» Write x_; = (z1,...,%j-1,%j41,...,2ZN), and let

1
f(x*j’p’w) =u <pj (w o Zi#jpizvi) ,SUj) '

» As long as p%. (w - Z#j pia:i> € XJQ, f is well defined and
continuous, and V, ) f exists on a neighborhood of
(Z_j,p,w) and is continuous in (z_;,p, w) at (Z_;,p,w) by
Assumption 3.

23/34



Proof (2/3)
» We claim that there exist open neighborhoods P! and W' of
p and w and a compact neighborhood Xij C Rffl of 7_;

such that
v(p,w) = max f(z_j,p,w) forall (p,w) € Pl x wt,
xijXij

where

argmax f(x_;,p,w) = {Z_;}.
x_jEX_]'

» Then by Corollary 9.5, v is differentiable at (p, w),

ov . _ _ of ou ,_ 1, _
apl(paw) apz(‘r—j7p7 ) 8758](‘%)]7](_%1)7

ov, af ou , .1
%(paw) %( —js Dy W) = ach(fU)p*j-
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Proof (3/3)

> le, P!, and W' are constructed as follows:

» Since z; = ﬁij (ﬂ) - Z#jﬁiii) € XJQ and

1 . . .
o (w — Zi# pixi) is continuous in (z_;, p, w),

there exist open neighborhoods PY and W' of p and w and
a compact neighborhood X! . C ]Rf_l of T_; such that

J
1

D (w — Zi;ﬁj piwz) € XJQ

for all (z_j,p,w) € X1 ; x PO x W?.

» Since z(p, w) is upper semi-continuous and x_;(p, w) C le,
we can take open neighborhoods P! ¢ P% and W' c W0 of

p and w such that z_;(p,w) C X', for all (p,w) € P! x W.
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Differentiability of the Expenditure Function

For p € RY, and t € [u(0),u), where 4 = SUD e u(z) and
we assume that «(0) < @, consider the expenditure function,

e(p,t) =inf{p-z |z € V(B)},
and the Hicksian demand correspondence,

hip,t) ={z e RY |2 € V(t), p-z = e(p,t)},
where V(t) = {z € RY | u(z) > t}.

» If u is upper semi-continuous, then h(p,t) is nonempty- and
compact-valued and upper semi-continuous in p.

» If in addition, w is locally insatiable, then h(p,t) is upper
semi-continuous in (p,t) and e(p,t) is continuous in (p, ).

(Proposition 3.17)
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Proposition 9.9
Assume that

1. w is upper semi-continuous, and

2. h(p. D) = {z}.

Then e is differentiable in p at (p,t) with

vpe(p7 E) =1
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Proof

» By Proposition 3.17, the upper semi-continuity of u implies
that h(p,t) is nonempty-valued and upper semi-continuous in

Pp-

» The function f(z,p) = p- z is differentiable in p, and
V,f(z,p) = x is continuous in (z,p).

» With h(p) = {Z}, the conclusion follows from Corollary 9.5.

28/34



Proposition 9.10
Assume that

1. w is locally insatiable and continuous,
2. h(p,t) = {z}, wheret > u(0),

3. for some j with Z; > 0 and for some neighborhoods X; and
0 7. 7 . N-1 . ou .
X2, ofzjandx_j in Ry and RY™", respectively, B, eXists

on X9 x X°. and is continuous in x at &, and
4. %ﬁ_(a‘:) =% (0 for some j satisfying the condition in 3.
Then e is differentiable at (p,t) with
Oe Oe Dj
7(]5’{):5325 7(13’{): J, ’
api ot g—%(x)

for any j satisfying the condition in 3.
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Proof

» By the upper semi-continuity and local insatiability of u, e is
continuous in (p,t).

» By the continuity of u, e(p,t) is a solution to the equation
v(p,w) —t =0 in w (which is unique by local insatiability),

and z(p,w) = h(p,t) = {x}, where w = e(p, t).
(See, e.g., Proposition 3.E.1 in MWG.)

» Therefore, combined with Assumptions 1 and 3, it follows
from Proposition 9.8 that v is differentiable at (p, w).
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Proof

» Combined with Assumption 4, it follows from a version of
the Implicit Function Theorem that the solution function
e(p,t) to the equation v(p,w) —t = 0 in w is differentiable at

(P, 1) with
o (=
&(ﬁ t_) _ _8pi(p7t_> :a_:z
9 K gi(pvf)
oe , _ —1 Dj
a. p7t = N\
TR T e
as claimed.
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Remark

» The continuity of a“, in z in Assumption 3 in Propositions
9.8 and 9.10 cannot be dropped.

See Oyama and Takenawa, Example 5.1.
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Concave Value Function

Let A be convex.

Proposition 9.11
Assume that
1. X*(q) #0 for all g € A,

2. forallz € X, f(x,-) is differentiable, and

3. v is concave.

Then v is differentiable at § with

oo, of
9qs (q) - dqs («T;Q);

s=1,...,8

for any = € X*(q).

33/34



Remark

» If X is convex and f is concave in (x,q), then v is concave.
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