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Parameterized Optimization (with Constant Constraints)
Let X ⊂ RN be a nonempty set, A ⊂ RS a nonempty open set.

For f : X ×A → R, consider the optimal value function

v(q) = sup
x∈X

f(x, q),

and the optimal solution correspondence

X∗(q) = {x ∈ X | f(x, q) = v(q)}.

We assume that X∗(q) ̸= ∅ for all q ∈ A.

We want to investigate the marginal effects of changes in q
on the value v(q).

Formally, the envelope theorem gives

1. a sufficient condition under which v is differentiable, and

2. a formula for the derivative (“envelope formula”).
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Outline
▶ Envelope formula is best interpreted through FOC under

the differentiability of the solution function (or selection) and
the differentiability of f in (x, q),

while these assumptions are irrelevant for the differentiability
of v and deriving the formula.

▶ If we directly assume the differentiability of v, deriving
the envelope formula is just a straightforward routine.

Differentiability of v is the real content of envelope theorem.

▶ Non-differentiability of v is a typical case when there are more
than one solutions.

▶ Provide a sufficient condition under which uniqueness of
solution implies differentiability of v,

with applications for the differentiability of support function
(or profit function), indirect utility function, and expenditure
function.

2 / 34



Main Reference

▶ D. Oyama and T. Takenawa,“On the (Non-)Differentiability
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Envelope Theorem via FOC

Proposition 9.1

Let x(·) be a selection of X∗,
i.e., a function such that x(q) ∈ X∗(q) for all q ∈ A.
Assume that

1. f is differentiable on IntX ×A, and

2. x(q̄) ∈ IntX, and x(·) is differentiable at q̄.

Then, v is differentiable at q̄, and

∂v

∂qs
(q̄) =

∂f

∂qs
(x(q̄), q̄), s = 1, . . . , S.
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Proof
▶ By the assumptions, v(q) = f(x(q), q) is differentiable at q̄.

▶ We have

∂v

∂qs
(q̄) =

∂

∂qs
f(x(q), q)

∣∣∣
q=q̄

=
∑
n

∂f

∂xn
(x(q̄), q̄)︸ ︷︷ ︸

= 0 by FOC

∂xn
∂qs

(q̄) +
∂f

∂qs
(x(q̄), q̄)

=
∂f

∂qs
(x(q̄), q̄).

▶ The change in the solution caused by the change in q has
no first-order effect on the value;

▶ the only effect is the direct effect.
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A Sufficient Condition for the Differentiability of x(·)

Proposition 9.2

Assume that

1. X is compact and f is continuous,

2. for each q ∈ A, X∗(q) = {x(q)} ⊂ IntX,

3. ∇xf exists and is continuously differentiable on IntX ×A,
and

4. |D2
xf(x(q̄), q̄)| ̸= 0.

Then, x(·) is continuously differentiable on a neighborhood of q̄.
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Proof

▶ By assumptions, x(·) is continuous by the Theorem of
Maximum.

▶ By the FOC, ∇xf(x(q), q) = 0 for all q ∈ A.

▶ By assumptions, ∇xf(x, q) = 0 is uniquely solved locally as
x = η(q) and η is continuously differentiable by the Implicit
Function Theorem.

I.e., there exist open neighborhoods U and V of x(q̄) and q̄,
respectively, such that ∇xf(x, q) = 0 if and only if x = η(q).

▶ By the continuity of x(·), there exists an open neighborhood
V ′ ⊂ V of q̄ such that x(q) ∈ U for all q ∈ V ′.

▶ By the FOC ∇xf(x(q), q) = 0, it follows that x(q) = η(q) for
all q ∈ V ′.
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Envelope Formula

If we directly assume the differentiability of the value function v,
neither the differentiability of f(x, q) in x nor that of x(q) in q is
needed in deriving the envelope formula.

Proposition 9.3

Assume that

1. for all x ∈ X, f(x, ·) is differentiable at q̄, and

2. v is differentiable at q̄.

Then, for any x̄ ∈ X∗(q̄),

∂v

∂qs
(q̄) =

∂f

∂qs
(x̄, q̄), s = 1, . . . , S.
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Proof

▶ Fix any x̄ ∈ X∗(q̄).

▶ Define the function

g(q) = f(x̄, q)− v(q).

By assumption, g is differentiable at q̄.

▶ By definition,

▶ g(q) ≤ 0 for all q ∈ A, and

▶ g(q̄) = 0.

▶ Thus, g is maximized at q̄, so that by FOC we have

0 =
∂g

∂qs
(q̄) =

∂f

∂qs
(x̄, q̄)− ∂v

∂qs
(q̄).
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Example: Non-Differentiable Value Function

Consider

f(x, q) = −1

4
x4 − q

3
x3 +

1

2
x2 + qx− 1

4
, q ∈ [−1, 1],

where fx(x, q) = −(x+ 1)(x+ q)(x− 1).

Then we have

v(q) =
2

3
|q|, X∗(q) =


{−1} if q < 0,

{−1, 1} if q = 0,

{1} if q > 0.

▶ At q = 0, v is not differentiable, and

▶ there are two optimal solutions.
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A Sufficient Condition for Differentiability of v

Proposition 9.4

Assume that

1. X∗ has a selection x(·) continuous at q̄, and

2. for all x ∈ X, f(x, ·) is differentiable, and ∇qf is continuous
in (x, q).

Then v is differentiable at q̄ with

∂v

∂qs
(q̄) =

∂f

∂qs
(x(q̄), q̄), s = 1, . . . , S.

Proof
See: Oyama and Takenawa, Proposition A.1.
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Corollary 9.5

Assume that

1. X∗ is upper semi-continuous with X∗(q) ̸= ∅ for all q ∈ A,

2. X∗(q̄) = {x̄}, and

3. for all x ∈ X, f(x, ·) is differentiable, and ∇qf is continuous
in (x, q).

Then v is differentiable at q̄ with

∂v

∂qs
(q̄) =

∂f

∂qs
(x̄, q̄), s = 1, . . . , S.
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Proof

▶ Assumptions 1 and 2 imply that any selection of X∗ is
continuous at q̄.

▶ Thus the conclusion follows from Proposition 9.4.

Remark

▶ A sufficient condition for Assumption 1 is that X is compact
and f is continuous, due to the Theorem of the Maximum.

13 / 34



Example: Non-Differentiable Value Function

▶ Even if an optimal solution is unique, the value function may
not be differentiable.

▶ In fact, there exists a continuous function f : X ×A → R
such that

1. X∗(q) is a singleton for all q and is continuous in q
(as a single-valued function), and

2. f is differentiable in q,

but v is not differentiable at some q.

See: Oyama and Takenawa, Example 2.1.
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Differentiability of the Support Function

For K ⊂ RN , K ̸= ∅, and p ∈ RN , consider the support function
of K,

πK(p) = sup
x∈K

p · x,

and the optimal solution correspondence,

SK(p) = {x ∈ RN | x ∈ K, πK(p) = p · x}.

If K is the production set of a firm, πK is the profit function and SK is

the supply correspondence (defined for all p ∈ RN ).

▶ If K is closed and convex and if SK(p̄) is nonempty and
bounded, then there exists an open neighborhood P 0 of p̄
such that SK is nonempty-valued and upper semi-continuous
on P 0. (Proposition 3.18)
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Proposition 9.6

Let K ⊂ RN be a nonempty closed convex set, and
πK : RN → (−∞,∞] its support function, i.e.,
πK(p) = supx∈K p · x.
Let p̄ ∈ RN be such that πK(p̄) < ∞.
Then πK is differentiable at p̄ if and only if
there is a unique x̄ ∈ K such that πK(p̄) = p̄ · x̄.
In this case, ∇πK(p̄) = x̄.

16 / 34



Proof

“If” part

▶ By the closedness and convexity of K ̸= ∅, it follows from
Proposition 3.18 that there exists an open neighborhood P 0

of p̄ such that SK is nonempty-valued and upper
semi-continuous on P 0.

▶ The function f(x, p) = p · x is differentiable in p, and
∇pf(x, p) = x is continuous in (x, p).

▶ With SK(p̄) = {x̄}, the conclusion follows from Corollary 9.5.
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Proof

“Only if” part

▶ By the definition, SK(p) ⊂ ∂πK(p).

▶ Since πK is convex, the differentiability of πK at p̄ implies
∂πK(p̄) = {∇πK(p̄)}.

▶ The nonemptiness of SK(p̄) follows from the differentiability
of πK by an elementary argument under the closedness of K
(see Oyama and Takenawa, Lemma A.5).

Hence, SK(p̄) is a singleton.

▶ By the differentiability of πK , we have
∇πK(p̄) = ∇p(p · x)|p=p̄,x=x̄ = x̄ for all x̄ ∈ SK(p̄).
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The convexity of K can be dropped if K is compact,
in which case CoK is closed.

Corollary 9.7

Let K ⊂ RN be a nonempty compact set.
Then πK is differentiable at p̄ if and only if
there is a unique x̄ ∈ K such that πK(p̄) = p̄ · x̄.
In this case, ∇πK(p̄) = x̄.
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Proof

▶ Show that SCoK = CoSK .

▶ CoK is nonempty and closed if K is nonempty and compact.

▶ Therefore, it follows from Proposition 9.6 that

πK = πCoK is differentiable at p̄

⇐⇒ SCoK(p̄) = CoSK(p̄) is a singleton

⇐⇒ SK(p̄) is a singleton,

in which case SK(p̄) = {∇πK(p̄)}.
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Differentiability of the Indirect Utility Function

For p ∈ RN
++ and w ∈ R++, consider the indirect utility function,

v(p, w) = sup{u(x) | x ∈ B(p, w)},

and the Walrasian demand correspondence,

x(p, w) = {x ∈ RN
+ | x ∈ B(p, w), u(x) = v(p, w)},

where B(p, w) = {x ∈ RN
+ | p · x ≤ w}.

▶ If u is continuous, then x is nonempty- and compact-valued
and upper semi-continuous.

(Proposition 3.16)
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Proposition 9.8

Assume that

1. u is locally insatiable and continuous,

2. x(p̄, w̄) = {x̄}, and

3. for some j with x̄j > 0 and for some neighborhoods X0
j and

X0
−j of x̄j and x̄−j in R+ and RN−1

+ , respectively, ∂u
∂xj

exists

on X0
j ×X0

−j and is continuous in x at x̄.

Then v is differentiable at (p̄, w̄) with

∂v

∂pi
(p̄, w̄) = −

∂u
∂xj

(x̄)

p̄j
x̄i,

∂v

∂w
(p̄, w̄) =

∂u
∂xj

(x̄)

p̄j

for any j satisfying the condition in 3.
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Proof (1/3)
▶ By the local insatiability, the inequality constraint p · x ≤ w

can be replaced by the equality constraint p · x = w.

▶ Let x(p̄, w̄) = {x̄}, where p̄ · x̄ = w̄.

▶ Let j, X0
j , and X0

−j be as in Assumption 3, where

x̄j =
1
p̄j

(
w̄ −

∑
i ̸=j p̄ix̄i

)
∈ X0

j .

▶ Write x−j = (x1, . . . , xj−1, xj+1, . . . , xN ), and let

f(x−j , p, w) = u

(
1

pj

(
w −

∑
i ̸=j pixi

)
, x−j

)
.

▶ As long as 1
pj

(
w −

∑
i ̸=j pixi

)
∈ X0

j , f is well defined and

continuous, and ∇(p,w)f exists on a neighborhood of
(x̄−j , p̄, w̄) and is continuous in (x−j , p, w) at (x̄−j , p̄, w̄) by
Assumption 3.
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Proof (2/3)
▶ We claim that there exist open neighborhoods P 1 and W 1 of

p̄ and w̄ and a compact neighborhood X1
−j ⊂ RN−1

+ of x̄−j

such that

v(p, w) = max
x−j∈X1

−j

f(x−j , p, w) for all (p, w) ∈ P 1 ×W 1,

where

argmax
x−j∈X−j

f(x−j , p̄, w̄) = {x̄−j}.

▶ Then by Corollary 9.5, v is differentiable at (p̄, w̄), and

∂v

∂pi
(p̄, w̄) =

∂f

∂pi
(x̄−j , p̄, w̄) =

∂u

∂xj
(x̄)

1

pj
(−x̄i),

∂v

∂w
(p̄, w̄) =

∂f

∂w
(x̄−j , p̄, w̄) =

∂u

∂xj
(x̄)

1

pj
.
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Proof (3/3)

▶ X1
−j , P

1, and W 1 are constructed as follows:

▶ Since x̄j =
1
p̄j

(
w̄ −

∑
i ̸=j p̄ix̄i

)
∈ X0

j and

1
pj

(
w −

∑
i ̸=j pixi

)
is continuous in (x−j , p, w),

there exist open neighborhoods P 0 and W 0 of p̄ and w̄ and
a compact neighborhood X1

−j ⊂ RN−1
+ of x̄−j such that

1
pj

(
w −

∑
i ̸=j pixi

)
∈ X0

j

for all (x−j , p, w) ∈ X1
−j × P 0 ×W 0.

▶ Since x(p, w) is upper semi-continuous and x−j(p̄, w̄) ⊂ X1
−j ,

we can take open neighborhoods P 1 ⊂ P 0 and W 1 ⊂ W 0 of
p̄ and w̄ such that x−j(p, w) ⊂ X1

−j for all (p, w) ∈ P 1 ×W 1.
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Differentiability of the Expenditure Function

For p ∈ RN
++ and t ∈ [u(0), ū), where ū = supx∈RN

+
u(x) and

we assume that u(0) < ū, consider the expenditure function,

e(p, t) = inf{p · x | x ∈ V (t)},

and the Hicksian demand correspondence,

h(p, t) = {x ∈ RN
+ | x ∈ V (t), p · x = e(p, t)},

where V (t) = {x ∈ RN
+ | u(x) ≥ t}.

▶ If u is upper semi-continuous, then h(p, t) is nonempty- and
compact-valued and upper semi-continuous in p.

▶ If in addition, u is locally insatiable, then h(p, t) is upper
semi-continuous in (p, t) and e(p, t) is continuous in (p, t).

(Proposition 3.17)
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Proposition 9.9

Assume that

1. u is upper semi-continuous, and

2. h(p̄, t̄) = {x̄}.
Then e is differentiable in p at (p̄, t̄) with

∇pe(p̄, t̄) = x̄.
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Proof

▶ By Proposition 3.17, the upper semi-continuity of u implies
that h(p, t̄) is nonempty-valued and upper semi-continuous in
p.

▶ The function f(x, p) = p · x is differentiable in p, and
∇pf(x, p) = x is continuous in (x, p).

▶ With h(p̄) = {x̄}, the conclusion follows from Corollary 9.5.
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Proposition 9.10

Assume that

1. u is locally insatiable and continuous,

2. h(p̄, t̄) = {x̄}, where t̄ > u(0),

3. for some j with x̄j > 0 and for some neighborhoods X0
j and

X0
−j of x̄j and x̄−j in R+ and RN−1

+ , respectively, ∂u
∂xj

exists

on X0
j ×X0

−j and is continuous in x at x̄, and

4. ∂u
∂xj

(x̄) ̸= 0 for some j satisfying the condition in 3.

Then e is differentiable at (p̄, t̄) with

∂e

∂pi
(p̄, t̄) = x̄i,

∂e

∂t
(p̄, t̄) =

p̄j
∂u
∂xj

(x̄)
,

for any j satisfying the condition in 3.
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Proof

▶ By the upper semi-continuity and local insatiability of u, e is
continuous in (p, t).

▶ By the continuity of u, e(p, t) is a solution to the equation
v(p, w)− t = 0 in w (which is unique by local insatiability),

and x(p̄, w̄) = h(p̄, t̄) = {x̄}, where w̄ = e(p̄, t̄).

(See, e.g., Proposition 3.E.1 in MWG.)

▶ Therefore, combined with Assumptions 1 and 3, it follows
from Proposition 9.8 that v is differentiable at (p̄, w̄).
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Proof

▶ Combined with Assumption 4, it follows from a version of
the Implicit Function Theorem that the solution function
e(p, t) to the equation v(p, w)− t = 0 in w is differentiable at
(p̄, t̄) with

∂e

∂pi
(p̄, t̄) = −

∂v
∂pi

(p̄, t̄)

∂v
∂w (p̄, t̄)

= x̄i,

∂e

∂t
(p̄, t̄) = − −1

∂v
∂w (p̄, t̄)

=
p̄j

uxj (x̄)
,

as claimed.
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Remark

▶ The continuity of ∂u
∂xj

in x in Assumption 3 in Propositions

9.8 and 9.10 cannot be dropped.

See Oyama and Takenawa, Example 5.1.
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Concave Value Function

Let A be convex.

Proposition 9.11

Assume that

1. X∗(q) ̸= ∅ for all q ∈ A,

2. for all x ∈ X, f(x, ·) is differentiable, and

3. v is concave.

Then v is differentiable at q̄ with

∂v

∂qs
(q̄) =

∂f

∂qs
(x̄, q̄), s = 1, . . . , S

for any x̄ ∈ X∗(q̄).
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Remark

▶ If X is convex and f is concave in (x, q), then v is concave.
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