9. Envelope Theorem

Daisuke Oyama

Mathematics II

May 16, 2025

Parameterized Optimization (with Constant Constraints) Let $X \subset \mathbb{R}^N$ be a nonempty set, $A \subset \mathbb{R}^S$ a nonempty open set. For $f: X \times A \to \mathbb{R}$, consider the optimal value function

$$v(q) = \sup_{x \in X} f(x, q),$$

and the optimal solution correspondence

$$X^*(q) = \{ x \in X \mid f(x,q) = v(q) \}.$$

We assume that $X^*(q) \neq \emptyset$ for all $q \in A$.

We want to investigate the marginal effects of changes in q on the value v(q).

Formally, the envelope theorem gives

- 1. a sufficient condition under which \boldsymbol{v} is differentiable, and
- 2. a formula for the derivative ("envelope formula").

Outline

Envelope formula is best interpreted through FOC under the differentiability of the solution function (or selection) and the differentiability of f in (x, q),

while these assumptions are irrelevant for the differentiability of \boldsymbol{v} and deriving the formula.

If we directly assume the differentiability of v, deriving the envelope formula is just a straightforward routine.

Differentiability of v is the real content of envelope theorem.

- Non-differentiability of v is a typical case when there are more than one solutions.
- Provide a sufficient condition under which uniqueness of solution implies differentiability of v,

with applications for the differentiability of support function (or profit function), indirect utility function, and expenditure function.

Main Reference

D. Oyama and T. Takenawa, "On the (Non-)Differentiability of the Optimal Value Function When the Optimal Solution Is Unique," *Journal of Mathematical Economics* 76, 21-32 (2018).

Envelope Theorem via FOC

Proposition 9.1

Let $x(\cdot)$ be a selection of X^* , i.e., a function such that $x(q) \in X^*(q)$ for all $q \in A$. Assume that

1. f is differentiable on $Int X \times A$, and

2. $x(\bar{q}) \in \text{Int } X$, and $x(\cdot)$ is differentiable at \bar{q} . Then, v is differentiable at \bar{q} , and

$$\frac{\partial v}{\partial q_s}(\bar{q}) = \frac{\partial f}{\partial q_s}(x(\bar{q}), \bar{q}), \qquad s = 1, \dots, S.$$

▶ By the assumptions, v(q) = f(x(q), q) is differentiable at \bar{q} .

We have

$$\begin{split} \frac{\partial v}{\partial q_s}(\bar{q}) &= \frac{\partial}{\partial q_s} f(x(q), q) \Big|_{q = \bar{q}} \\ &= \sum_n \underbrace{\frac{\partial f}{\partial x_n}(x(\bar{q}), \bar{q})}_{= 0 \text{ by FOC}} \frac{\partial x_n}{\partial q_s}(\bar{q}) + \frac{\partial f}{\partial q_s}(x(\bar{q}), \bar{q}) \\ &= \frac{\partial f}{\partial q_s}(x(\bar{q}), \bar{q}). \end{split}$$

- The change in the solution caused by the change in q has no first-order effect on the value;
- the only effect is the direct effect.

A Sufficient Condition for the Differentiability of $x(\cdot)$

Proposition 9.2

Assume that

- 1. X is compact and f is continuous,
- 2. for each $q \in A$, $X^*(q) = \{x(q)\} \subset \operatorname{Int} X$,

3. $\nabla_x f$ exists and is continuously differentiable on $\operatorname{Int} X \times A$, and

4. $|D_x^2 f(x(\bar{q}), \bar{q})| \neq 0.$

Then, $x(\cdot)$ is continuously differentiable on a neighborhood of \bar{q} .

By assumptions, x(·) is continuous by the Theorem of Maximum.

• By the FOC,
$$\nabla_x f(x(q), q) = 0$$
 for all $q \in A$.

▶ By assumptions, $\nabla_x f(x,q) = 0$ is uniquely solved locally as $x = \eta(q)$ and η is continuously differentiable by the Implicit Function Theorem.

I.e., there exist open neighborhoods U and V of $x(\bar{q})$ and \bar{q} , respectively, such that $\nabla_x f(x,q) = 0$ if and only if $x = \eta(q)$.

- By the continuity of $x(\cdot)$, there exists an open neighborhood $V' \subset V$ of \bar{q} such that $x(q) \in U$ for all $q \in V'$.
- ▶ By the FOC $\nabla_x f(x(q),q) = 0$, it follows that $x(q) = \eta(q)$ for all $q \in V'$.

Envelope Formula

If we directly assume the differentiability of the value function v, neither the differentiability of f(x,q) in x nor that of x(q) in q is needed in deriving the envelope formula.

Proposition 9.3

Assume that

1. for all $x \in X$, $f(x, \cdot)$ is differentiable at \bar{q} , and

2. v is differentiable at \bar{q} . Then, for any $\bar{x} \in X^*(\bar{q})$,

$$\frac{\partial v}{\partial q_s}(\bar{q}) = \frac{\partial f}{\partial q_s}(\bar{x}, \bar{q}), \qquad s = 1, \dots, S.$$

- Fix any $\bar{x} \in X^*(\bar{q})$.
- Define the function

$$g(q) = f(\bar{x}, q) - v(q).$$

By assumption, g is differentiable at \bar{q} .

- By definition,
 - $g(q) \le 0$ for all $q \in A$, and • $g(\bar{q}) = 0$.

• Thus, g is maximized at \bar{q} , so that by FOC we have

$$0 = \frac{\partial g}{\partial q_s}(\bar{q}) = \frac{\partial f}{\partial q_s}(\bar{x},\bar{q}) - \frac{\partial v}{\partial q_s}(\bar{q}).$$

Example: Non-Differentiable Value Function

Consider

$$f(x,q) = -\frac{1}{4}x^4 - \frac{q}{3}x^3 + \frac{1}{2}x^2 + qx - \frac{1}{4}, \quad q \in [-1,1],$$

where $f_x(x,q) = -(x+1)(x+q)(x-1)$.

Then we have

$$v(q) = \frac{2}{3}|q|, \quad X^*(q) = \begin{cases} \{-1\} & \text{if } q < 0, \\ \{-1,1\} & \text{if } q = 0, \\ \{1\} & \text{if } q > 0. \end{cases}$$

• At q = 0, v is not differentiable, and

there are two optimal solutions.

A Sufficient Condition for Differentiability of v

Proposition 9.4

Assume that

- 1. X^* has a selection $x(\cdot)$ continuous at \bar{q} , and
- 2. for all $x \in X$, $f(x, \cdot)$ is differentiable, and $\nabla_q f$ is continuous in (x, q).

Then v is differentiable at \bar{q} with

$$\frac{\partial v}{\partial q_s}(\bar{q}) = \frac{\partial f}{\partial q_s}(x(\bar{q}), \bar{q}), \qquad s = 1, \dots, S.$$

Proof See: Oyama and Takenawa, Proposition A.1.

Corollary 9.5

Assume that

- 1. X^* is upper semi-continuous with $X^*(q) \neq \emptyset$ for all $q \in A$,
- 2. $X^*(\bar{q}) = \{\bar{x}\}$, and
- 3. for all $x \in X$, $f(x, \cdot)$ is differentiable, and $\nabla_q f$ is continuous in (x, q).

Then v is differentiable at \bar{q} with

$$\frac{\partial v}{\partial q_s}(\bar{q}) = \frac{\partial f}{\partial q_s}(\bar{x}, \bar{q}), \qquad s = 1, \dots, S.$$

- Assumptions 1 and 2 imply that any selection of X* is continuous at q.
- Thus the conclusion follows from Proposition 9.4.

Remark

► A sufficient condition for Assumption 1 is that X is compact and f is continuous, due to the Theorem of the Maximum.

Example: Non-Differentiable Value Function

- Even if an optimal solution is unique, the value function may not be differentiable.
- ▶ In fact, there exists a continuous function $f: X \times A \to \mathbb{R}$ such that
 - 1. $X^*(q)$ is a singleton for all q and is continuous in q (as a single-valued function), and
 - 2. f is differentiable in q,

but v is not differentiable at some q.

See: Oyama and Takenawa, Example 2.1.

Differentiability of the Support Function

For $K\subset \mathbb{R}^N, \, K\neq \emptyset,$ and $p\in \mathbb{R}^N,$ consider the support function of K,

$$\pi_K(p) = \sup_{x \in K} p \cdot x,$$

and the optimal solution correspondence,

$$S_K(p) = \{ x \in \mathbb{R}^N \mid x \in K, \ \pi_K(p) = p \cdot x \}.$$

If K is the production set of a firm, π_K is the profit function and S_K is the supply correspondence (defined for all $p \in \mathbb{R}^N$).

If K is closed and convex and if S_K(p̄) is nonempty and bounded, then there exists an open neighborhood P⁰ of p̄ such that S_K is nonempty-valued and upper semi-continuous on P⁰. (Proposition 3.18)

Proposition 9.6

Let $K \subset \mathbb{R}^N$ be a nonempty closed convex set, and $\pi_K : \mathbb{R}^N \to (-\infty, \infty]$ its support function, i.e., $\pi_K(p) = \sup_{x \in K} p \cdot x.$ Let $\bar{p} \in \mathbb{R}^N$ be such that $\pi_K(\bar{p}) < \infty$. Then π_K is differentiable at \bar{p} if and only if there is a unique $\bar{x} \in K$ such that $\pi_K(\bar{p}) = \bar{p} \cdot \bar{x}.$ In this case, $\nabla \pi_K(\bar{p}) = \bar{x}.$

"If" part

- ▶ By the closedness and convexity of $K \neq \emptyset$, it follows from Proposition 3.18 that there exists an open neighborhood P^0 of \bar{p} such that S_K is nonempty-valued and upper semi-continuous on P^0 .
- ▶ The function $f(x, p) = p \cdot x$ is differentiable in p, and $\nabla_p f(x, p) = x$ is continuous in (x, p).
- With $S_K(\bar{p}) = \{\bar{x}\}$, the conclusion follows from Corollary 9.5.

"Only if" part

• By the definition, $S_K(p) \subset \partial \pi_K(p)$.

Since π_K is convex, the differentiability of π_K at \bar{p} implies $\partial \pi_K(\bar{p}) = \{\nabla \pi_K(\bar{p})\}.$

The nonemptiness of S_K(p̄) follows from the differentiability of π_K by an elementary argument under the closedness of K (see Oyama and Takenawa, Lemma A.5).

Hence, $S_K(\bar{p})$ is a singleton.

▶ By the differentiability of π_K , we have $\nabla \pi_K(\bar{p}) = \nabla_p (p \cdot x)|_{p=\bar{p}, x=\bar{x}} = \bar{x}$ for all $\bar{x} \in S_K(\bar{p})$. The convexity of K can be dropped if K is compact, in which case $\operatorname{Co} K$ is closed.

Corollary 9.7 Let $K \subset \mathbb{R}^N$ be a nonempty compact set. Then π_K is differentiable at \bar{p} if and only if there is a unique $\bar{x} \in K$ such that $\pi_K(\bar{p}) = \bar{p} \cdot \bar{x}$. In this case, $\nabla \pi_K(\bar{p}) = \bar{x}$.

Show that
$$S_{\operatorname{Co} K} = \operatorname{Co} S_K$$
.

- $\operatorname{Co} K$ is nonempty and closed if K is nonempty and compact.
- Therefore, it follows from Proposition 9.6 that

 $\begin{aligned} \pi_K &= \pi_{\operatorname{Co} K} \text{ is differentiable at } \bar{p} \\ \iff S_{\operatorname{Co} K}(\bar{p}) = \operatorname{Co} S_K(\bar{p}) \text{ is a singleton} \\ \iff S_K(\bar{p}) \text{ is a singleton}, \end{aligned}$

in which case $S_K(\bar{p}) = \{\nabla \pi_K(\bar{p})\}.$

Differentiability of the Indirect Utility Function

For $p \in \mathbb{R}^N_{++}$ and $w \in \mathbb{R}_{++}$, consider the indirect utility function, $v(p,w) = \sup\{u(x) \mid x \in B(p,w)\},$

and the Walrasian demand correspondence,

$$x(p,w) = \{ x \in \mathbb{R}^N_+ \mid x \in B(p,w), \ u(x) = v(p,w) \},\$$

where $B(p, w) = \{x \in \mathbb{R}^N_+ \mid p \cdot x \le w\}.$

If u is continuous, then x is nonempty- and compact-valued and upper semi-continuous.

(Proposition 3.16)

Proposition 9.8

Assume that

- 1. u is locally insatiable and continuous,
- 2. $x(\bar{p}, \bar{w}) = \{\bar{x}\}$, and
- 3. for some j with $\bar{x}_j > 0$ and for some neighborhoods X_j^0 and X_{-j}^0 of \bar{x}_j and \bar{x}_{-j} in \mathbb{R}_+ and \mathbb{R}_+^{N-1} , respectively, $\frac{\partial u}{\partial x_j}$ exists on $X_j^0 \times X_{-j}^0$ and is continuous in x at \bar{x} . Then v is differentiable at (\bar{p}, \bar{w}) with

$$\frac{\partial v}{\partial p_i}(\bar{p},\bar{w}) = -\frac{\frac{\partial u}{\partial x_j}(\bar{x})}{\bar{p}_j}\bar{x}_i, \quad \frac{\partial v}{\partial w}(\bar{p},\bar{w}) = \frac{\frac{\partial u}{\partial x_j}(\bar{x})}{\bar{p}_j}$$

for any j satisfying the condition in 3.

Proof (1/3)

▶ By the local insatiability, the inequality constraint $p \cdot x \leq w$ can be replaced by the equality constraint $p \cdot x = w$.

• Let
$$x(\bar{p}, \bar{w}) = \{\bar{x}\}$$
, where $\bar{p} \cdot \bar{x} = \bar{w}$.

• Let
$$j$$
, X_j^0 , and X_{-j}^0 be as in Assumption 3, where
 $\bar{x}_j = \frac{1}{\bar{p}_j} \left(\bar{w} - \sum_{i \neq j} \bar{p}_i \bar{x}_i \right) \in X_j^0$.

• Write
$$x_{-j} = (x_1, ..., x_{j-1}, x_{j+1}, ..., x_N)$$
, and let

$$f(x_{-j}, p, w) = u\left(\frac{1}{p_j}\left(w - \sum_{i \neq j} p_i x_i\right), x_{-j}\right).$$

▶ As long as $\frac{1}{p_j} \left(w - \sum_{i \neq j} p_i x_i \right) \in X_j^0$, f is well defined and continuous, and $\nabla_{(p,w)} f$ exists on a neighborhood of $(\bar{x}_{-j}, \bar{p}, \bar{w})$ and is continuous in (x_{-j}, p, w) at $(\bar{x}_{-j}, \bar{p}, \bar{w})$ by Assumption 3.

Proof (2/3)

▶ We claim that there exist open neighborhoods P^1 and W^1 of \bar{p} and \bar{w} and a compact neighborhood $X^1_{-j} \subset \mathbb{R}^{N-1}_+$ of \bar{x}_{-j} such that

$$v(p,w) = \max_{x_{-j} \in X_{-j}^1} f(x_{-j}, p, w) \text{ for all } (p,w) \in P^1 \times W^1,$$

where

$$\arg\max_{x_{-j}\in X_{-j}} f(x_{-j}, \bar{p}, \bar{w}) = \{\bar{x}_{-j}\}.$$

▶ Then by Corollary 9.5, v is differentiable at (\bar{p}, \bar{w}) , and

$$\begin{aligned} \frac{\partial v}{\partial p_i}(\bar{p},\bar{w}) &= \frac{\partial f}{\partial p_i}(\bar{x}_{-j},\bar{p},\bar{w}) = \frac{\partial u}{\partial x_j}(\bar{x})\frac{1}{p_j}(-\bar{x}_i),\\ \frac{\partial v}{\partial w}(\bar{p},\bar{w}) &= \frac{\partial f}{\partial w}(\bar{x}_{-j},\bar{p},\bar{w}) = \frac{\partial u}{\partial x_j}(\bar{x})\frac{1}{p_j}. \end{aligned}$$

Proof (3/3)

• X_{-j}^1 , P^1 , and W^1 are constructed as follows: • Since $\bar{x}_j = \frac{1}{\bar{p}_j} \left(\bar{w} - \sum_{i \neq j} \bar{p}_i \bar{x}_i \right) \in X_j^0$ and $\frac{1}{p_j} \left(w - \sum_{i \neq j} p_i x_i \right)$ is continuous in (x_{-j}, p, w) , there exist open neighborhoods P^0 and W^0 of \bar{p} and \bar{w} and a compact neighborhood $X_{-j}^1 \subset \mathbb{R}^{N-1}_+$ of \bar{x}_{-j} such that $\frac{1}{p_j} \left(w - \sum_{i \neq j} p_i x_i \right) \in X_j^0$ for all $(x_{-j}, p, w) \in X_{-j}^1 \times P^0 \times W^0$.

Since x(p, w) is upper semi-continuous and $x_{-j}(\bar{p}, \bar{w}) \subset X_{-j}^1$, we can take open neighborhoods $P^1 \subset P^0$ and $W^1 \subset W^0$ of \bar{p} and \bar{w} such that $x_{-j}(p, w) \subset X_{-j}^1$ for all $(p, w) \in P^1 \times W^1$.

Differentiability of the Expenditure Function

For $p \in \mathbb{R}^N_{++}$ and $t \in [u(0), \bar{u})$, where $\bar{u} = \sup_{x \in \mathbb{R}^N_+} u(x)$ and we assume that $u(0) < \bar{u}$, consider the expenditure function,

$$e(p,t) = \inf\{p \cdot x \mid x \in V(t)\},\$$

and the Hicksian demand correspondence,

$$h(p,t) = \{ x \in \mathbb{R}^N_+ \mid x \in V(t), \ p \cdot x = e(p,t) \},\$$

where $V(t) = \{x \in \mathbb{R}^N_+ \mid u(x) \ge t\}.$

- If u is upper semi-continuous, then h(p,t) is nonempty- and compact-valued and upper semi-continuous in p.
- If in addition, u is locally insatiable, then h(p,t) is upper semi-continuous in (p,t) and e(p,t) is continuous in (p,t).
 (Proposition 3.17)

Proposition 9.9

Assume that

- $1. \ u$ is upper semi-continuous, and
- 2. $h(\bar{p}, \bar{t}) = \{\bar{x}\}.$

Then e is differentiable in p at (\bar{p},\bar{t}) with

$$\nabla_p e(\bar{p}, \bar{t}) = \bar{x}.$$

- By Proposition 3.17, the upper semi-continuity of u implies that h(p, t̄) is nonempty-valued and upper semi-continuous in p.
- The function $f(x, p) = p \cdot x$ is differentiable in p, and $\nabla_p f(x, p) = x$ is continuous in (x, p).

• With $h(\bar{p}) = {\bar{x}}$, the conclusion follows from Corollary 9.5.

Proposition 9.10

Assume that

1. u is locally insatiable and continuous,

2.
$$h(\bar{p}, \bar{t}) = \{\bar{x}\}$$
, where $\bar{t} > u(0)$,

3. for some
$$j$$
 with $\bar{x}_j > 0$ and for some neighborhoods X_j^0 and X_{-j}^0 of \bar{x}_j and \bar{x}_{-j} in \mathbb{R}_+ and \mathbb{R}_+^{N-1} , respectively, $\frac{\partial u}{\partial x_j}$ exists on $X_j^0 \times X_{-j}^0$ and is continuous in x at \bar{x} , and

4. $\frac{\partial u}{\partial x_j}(\bar{x}) \neq 0$ for some j satisfying the condition in 3. Then e is differentiable at (\bar{p}, \bar{t}) with

$$\frac{\partial e}{\partial p_i}(\bar{p},\bar{t}) = \bar{x}_i, \quad \frac{\partial e}{\partial t}(\bar{p},\bar{t}) = \frac{\bar{p}_j}{\frac{\partial u}{\partial x_j}(\bar{x})},$$

for any j satisfying the condition in 3.

By the upper semi-continuity and local insatiability of u, e is continuous in (p, t).

▶ By the continuity of u, e(p,t) is a solution to the equation v(p, w) - t = 0 in w (which is unique by local insatiability), and x(p̄, w̄) = h(p̄, t̄) = {x̄}, where w̄ = e(p̄, t̄).
(See, e.g., Proposition 3.E.1 in MWG.)

Combined with Assumption 4, it follows from a version of the Implicit Function Theorem that the solution function e(p,t) to the equation v(p,w) - t = 0 in w is differentiable at (\bar{p},\bar{t}) with

$$\begin{split} \frac{\partial e}{\partial p_i}(\bar{p},\bar{t}) &= -\frac{\frac{\partial v}{\partial p_i}(\bar{p},\bar{t})}{\frac{\partial v}{\partial w}(\bar{p},\bar{t})} = \bar{x}_i,\\ \frac{\partial e}{\partial t}(\bar{p},\bar{t}) &= -\frac{-1}{\frac{\partial v}{\partial w}(\bar{p},\bar{t})} = \frac{\bar{p}_j}{u_{x_j}(\bar{x})}, \end{split}$$

as claimed.

Remark

• The continuity of $\frac{\partial u}{\partial x_j}$ in x in Assumption 3 in Propositions 9.8 and 9.10 cannot be dropped.

See Oyama and Takenawa, Example 5.1.

Concave Value Function

Let A be convex.

Proposition 9.11

Assume that

1.
$$X^*(q) \neq \emptyset$$
 for all $q \in A$,

2. for all $x \in X$, $f(x, \cdot)$ is differentiable, and

3. v is concave.

Then v is differentiable at \bar{q} with

$$\frac{\partial v}{\partial q_s}(\bar{q}) = \frac{\partial f}{\partial q_s}(\bar{x}, \bar{q}), \qquad s = 1, \dots, S$$

for any $\bar{x} \in X^*(\bar{q})$.

\blacktriangleright If X is convex and f is concave in (x,q), then v is concave.