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Some Facts from Linear Algebra

Let M € RV*V,
» M is said to be nonsingular if there exists A € RNV*N

such that M A = AM = 1.

In this case, A is called the inverse matrix of M and
denoted by M.

» The following are equivalent:

» M is nonsingular.

> rank M = N.

> [M]#0.

> {zeRYN | Mz =0} = {0}

» 0 is not a characteristic root of M.
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Some Facts from Linear Algebra
Let M € RV*N,

» The equation in A,
|M — XI| =0,
is called the characteristic equation of M.

» The characteristic equation of M has N solutions in C
(counted with multiplicity).

» The solutions to the characteristic equation of M are called
the characteristic roots of M.

> If A\q,..., An are the characteristic roots of M, then
N
[M] = [T=1 An-

» If M is nonsingular and Ay, ..., Ay are its characteristic roots,
then )\1_1, cee )\]_Vl are the characteristic roots of M .
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Some Facts from Linear Algebra

Let M € RN*N,

» )\ e Cis an eigenvalue of M if there exists z € CVN with z # 0
such that

Mz = \z.

In this case, z is called an eigenvector of M that corresponds
(or belongs) to A.

P> )\ is an eigenvalue of M if and only if it is a characteristic root
of M.
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Some Facts from Linear Algebra

Let M € RV*N be a symmetric matrix.

» All the eigenvalues (hence characteristic roots) of M are real.

» Each eigenvalue of M has real eigenvectors.

» JU € RVXN orthogonal (i.e., UTU = UUT = I) such that

A1 O
UTMU = (= diag(A1, ..., An)),
(@) AN
where A\1,..., Axy € R are the eigenvalues of M.

» If M is nonsingular, then M1 is symmetric.

4/34



Negative (Semi-)Definite Matrices
Definition 6.1
» M € RV*N is negative semi-definite if
z-Mz<0
for all z € RV,
> M € RV*N is negative definite if
z-Mz<0

for all z € RN with z # 0.

> M € RN*N is positive definite (positive semi-definite, resp.)
if —M is negative definite (negative semi-definite, resp.).
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Remark

» In many math books,
negative definiteness is defined only for symmetric matrices, or
for quadratic forms 2%:1 Aij2i%j.

(Any quadratic form is written as z - Mz for some symmetric M)

» Sometimes, matrices (not necessarily symmetric) that are
negative definite in our sense are called negative quasi-definite.
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Example: Negative (Semi-)Definiteness of Jacobi Matrices

Let X C RY be a non-empty open convex set.

Suppose that f: X — R is differentiable.

1. (y—x) - (f(y) — f(x)) <0 forall z,y € X if and only if
D f(x) is negative semi-definite for all z € X.

2. If Df(x) is negative definite for all z € X, then
(y—2) (f(y) — f(z)) <O forall 2,y € X, z £y,

» For N =1,
“(ly—x) (f(y) — f(x)) <0 (<0) for all z,y € X" implies
that f is nonincreasing (strictly decreasing).

» Cf. Proposition 5.20.
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Example: Negative (Semi-)Definiteness of Hesse Matrices

Let X C RY be a non-empty open convex set.

Suppose that f: X — R is differentiable and V f is differentiable.

1. f is concave if and only if
D?f(z) is negative semi-definite for all z € X.

2. If D?f(x) is negative definite for all x € X, then

f is strictly concave.

» Proposition 5.21.
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Characterizations of Negative (Semi-)Definiteness

Proposition 6.1
Let M € RV*NV.

1. M is negative definite
<= M + M7 is negative definite.

2. Suppose that M is symmetric.
M is negative definite
<= all the characteristic roots of M are negative.

3. M is negative definite
== M is nonsingular and M~ is negative definite.
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Proof

1. Forany z e RN, 2T(M + M)z = 2:TM 2.
2. Since M = UT diag(\1, ..., A\y)U for some U orthogonal

(hence nonsingular),
2YMz < 0 for all z ¢ RV \ {0}
— (Uz)Tdiag(\1,...,An)(Uz) <0 for all z € RV \ {0}
= SN Ayn)? =y  diag(Ai,. ., An)y < 0
forally € {Uz | z € RV \ {0}} = RV \ {0}
<~ A,...,An <0.
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3. Suppose Mz = 0. Then zT(M + M™)z = 0.
Thus, if M is negative definite (and so is M + MT),
we must have z = 0.

Take any z € RV, z # 0.
Let = M1z (#£0). Then 2 = M.
Then we have
2PM T = (Mz)T MY (M)
=2 MY = 2" Mz < 0.
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Characterizations of Negative (Semi-)Definiteness

Proposition 6.2
Let M € RN*N pe symmetric.
1. M is negative semi-definite
<= 3B € RV*N such that M = —BTB.

2. M is negative definite

<= 3B € RV*N nonsingular such that M = —B"B.
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Proof

> The “if" part:
Suppose that M = —BTB. Then for any z € RV,

"Mz =—2TB"Bz = —||Bz||> < 0.

» If B is nonsingular and z # 0, then ||Bz|| # 0.
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Proof

The “only if" part:

A

Since M is symmetric, we have UT MU =

O

for some U orthogonal (hence nonsingular).

If M is negative semi-definite, then Ay,..., Ay < 0.

NESY o)
Let B = UT.
o) V=N
A @)
Then —BTB=U Ul =M.
@) AN

If M is negative definite, then Ay,..., Ay <0,
so that B is nonsingular.
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Characterizations of Negative (Semi-)Definiteness

Proposition 6.3

Let M € RV*N pe symmetric.
M is negative definite
— (—-1)"|;M;| >0 forallr=1,...,N.

> .M, € R™*" is the r x r submatrix of M obtained by deleting
the last N — r columns and rows of M,
which is called the leading principal submatrix of order r of M.

» |, M,| is called the leading principal minor of order r of M.

» .M € RN will denote the r x N submatrix of M obtained by
deleting the last N — r rows of M.
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Proof

The “only if" part:

If M is negative definite, then .M, is negative definite and
its characteristic roots Aq, ..., A, are all negative, and thus,

(1) M| = (=A1) X - % (=Ar) > 0.

The “if" part: by induction:
Trivial for N = 1.
Assume that the assertion holds for N — 1.

Suppose that (—1)"|,M,| >0 forall r =1,..., N.
Then L = y_1Mpy_1 is negative definite by the induction
hypothesis.

Hence,
» [ is nonsingular, and

» L = —B" B for some nonsingular B.
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Proof

> Write M = (% b ) where b € RN-1)x1,
b aN N
In_1 L7

Then one can verify that M = UT <0LT 2) U,

where ¢ = ayy — bT L~ 1b.
» Thus, |M| = c|L|.

But by assumption, (—=1)¥|M| > 0 and (—=1)V~YL| > 0, so
that ¢ < 0.
> Let B = B 0 U, which is nonsingular
- OT \/jc ! g ’
where L = —BTB.

Then M = —B"B. Hence, M is negative definite.
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Note

» “(=1)"|,M,| >0forallr=1,...,N" does not imply
that M is negative semi-definite.

» For example,

=)

satisfies this condition ((—1)|; M| = (—1)?|M| = 0),
but is not negative semi-definite.
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Characterizations of Negative (Semi-)Definiteness

Proposition 6.4
Let M € RV*NV.

1. Suppose that M is symmetric.
M is negative semi-definite

<« (=1)"|,MF| >0 forallr=1,...,N and
for all permutations w of {1,...,N}.

2. If (not necessarily symmetric) M is negative semi-definite,
then (=1)"|,MT| >0 forallr =1,...,N and
for all permutations m of {1,...,N}.
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Application to Concave Functions

2
Denote fi;(z) = ao?jgxi ().

» f(x1,x9) is strictly concave

<= D?f(z1,12) is negative definite  V (z1,12)

e (“)fn > 0and (12|10 20500 viay, )
for fo2
<~ f11 < 0 and f11f22 — (f12)2 >0 V(ml,l'Q)

» f(x1,x2) is concave
<= D?f(z1,72) is negative semi-definite  V (x1, x2)
= (1) fu >0, (-1) fu fi2) S

far fa2

(=1)f22 >0, and (—1)? fao  fo1

f12 f11

< f11 <0, f22 <0, and fi1foo — (f12)2 >0 V(21,79)

>0 VY(xi,z2)
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Characterizations of Negative (Semi-)Definiteness

Proposition 6.5
Let M € RV*N pe symmetric, and B € RNV*S with S < N be
such that tank B = S. Let W = {z ¢ RN | BTz = 0}.

1. M is negative definite on W if and only if

forallr=S5+1,...,N.

2. M is negative semi-definite on W if and only if

M BT

>
(BT o |=

(=1)"

forallr=S+1,...,N and for all permutations w of
{1,...,N}.
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Application to Quasi-Concave Functions

2
Denote fi(z) = %(m) and fj(z) = %(m).

» f(x1,x2) is strictly quasi-concave
<= D?f(x1, 1) is negative definite on TG (21 ,20) ¥ (71, 72)
fin fiz S
= (=1)%|far fo2 fo| >0 V(21,22)
fi f20
= 2f1faf12 — (f1)?fa2 — (f2)?f11 >0V (21, 22)

where T ¢, 2) = {2 € RN | V f(x1,22) - 2 = 0}.
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Characterizations of Negative (Semi-)Definiteness

For p € RY, we denote T, = {z e RV | p- 2 = 0}

Proposition 6.6

Let M € RV*N,

and suppose that p > 0, Mp =0, and MTp = 0.

Let M € RW=Dx(N=1) pe the matrix obtained by deleting
the nth row and column for some n.

1. Ifrank M = N — 1, then rank M = N — 1.

2. If M is negative definite on T,, then M is negative definite on
RN\ {z € RN | 2 = \p for some \ € R}.

3. M is negative definite on T, if and only if

M is negative definite.
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Stable Matrices

Definition 6.2
M € RN*N is stable if all of its characteristic roots have

a negative real part.

Proposition 6.7

For M € RN*N and K € RVXN,

suppose that M is negative definite and K is symmetric.
Then KM s stable if and only if K is positive definite.
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Some Other Results

Definition 6.3
M = (a;j) € RV*N has a dominant diagonal if there exists p > 0

such that ‘piau“ > Zj¢i|pjaij\ foralli=1,...,N.

Definition 6.4
> M = (a;;) € RV*N has the gross substitute sign pattern if
a;; > 0 for all 4, j with 7 # j.

> M = (a;;) € RV*N is a Metzler matrix if a;; > 0 for all 4, j
with i # 7.

» M is a Z-matrix if —M is a Metzler matrix.

» Obviously, if M has the gross substitute sign pattern,
then it is a Metzler matrix.
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Some Other Results

Proposition 6.8
Let M € RVXN,

1. If M has a dominant diagonal, then it is nonsingular.

2. Suppose that M is symmetric.
If M has a negative and dominant diagonal,
then it is negative definite.

3. If M is a Metzler matrix and if Mp < 0 and M™p < 0 for
some p > 0, then M is negative definite.

4. If M has the gross substitute sign pattern and
if Mp =0 and M™p = 0 for some p > 0,
then M is negative definite,

where M € ROV-Dx(N=1) js the matrix obtained by deleting
the nth row and column for some n.
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Proof

1. Suppose that Mz = 0. We want to show that z = 0.
Let p > 0 be as in the definition of diagonal dominance.
Let y; = z;/p;, and let i be such that |y;| > |y;| for all j.

Since an-(piyi) = — Zj#i aij (pjyj), we have
Ipiaaillyil = > pjaizys| <Y Ipsagllyl < Ipjagllil,
J#i J#i J#i

and hence (\pzaul — Zj;,éi]pjaij]) \yz\ S 0.

Since |p;iaii| — >_;|pjaij| > 0 by the dominant diagonal,
it follows that |y;| = 0, which implies that z = 0.
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2. We show that all the eigenvalues of M are negative.

Let A € R be any eigenvalue of M, and let z € RN, 2 £ 0, be
a corresponding eigenvector, i.e., we have Mz = Az.

Let y; = z;/p;, and let ¢ be such that |y;| > |y;| for all j,
where |y;| # 0.

Since (a“' — )\)(p122> = — Eﬁéi a,;j(pjzj), we have

Ipicis — piM|lyil = > pjaizys| <Y Ipjailly;l
J# J#
< Ipsagllyil < Ipsaillyil
J#
by the dominant diagonal, and hence |a;; — A| < |ail.

By a;; < 0, this holds if and only if 2a;; < A < 0,
in particular only if A < 0.
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3. We show that M + M™ is a negative and dominant diagonal,
which implies that M + M7 is negative definite by 2.

By Mp < 0 and MTp <« 0 where p > 0, we have

pi(2aii) < — E#ipj(aij + aji) for all 3.

By a;; > 0 for all ¢ # j, we have 2a;; < 0 and |p;(2a;;)| =

—pi(2ai;) > Zj;éipj(aij +aj) = Z#i|pj(aij +aj;)| for all 4.
4. Takeany n=1,...,N, and let M be the (N —1) x (N —1)

matrix obtained by deleting the nth row and column.

By the assumptions, M is a Metzler matrix, and for all 4 #n,
Z#npjaw = —ppain < 0 and Z]#n PjGji = —Ppn; < 0, so
that Mp < 0 and MTp < 0.

Hence, by 3, M is negative definite.
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Some Results on Nonnegative Matrices

> M = (a;;) € RV*V is called a nonnegative (positive) matrix
if a;; >0 (a;; >0)foralli,j=1,...,N.
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Some Results on Nonnegative Matrices |

Proposition 6.9

For a nonnegative matrix M € RN*N,
the following conditions are equivalent:

1.
2.
3.

For every ¢ > 0, there exists z > 0 such that Mz + c = z.
There exists z > 0 such that Mz < z.

There exists z > 0 such that Mz < z.

|n(I—M),| >0 forallr=1,...,N (“Hawkins-Simon condition”).

There exist lower and upper triangular matrices L and U with
positive diagonals and nonpositive off-diagonals such that
I-M=1LU.

I — M is nonsingular, and (I — M)~ > 0.
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Some Results on Nonnegative Matrices ||

Proposition 6.9

7. |Ni| <1 foralli=1,...,N,
where \1, ..., Ay are the characteristic roots of M .

8. limg_o00 Z?:o M? exists (which is equal to (I — M)™1).
9. limy_,0e M* = O.
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Spectral Radius

> For M € RNXN et
AM) = max{|A1],..., | \n|},

where A1, ..., Ay are the characteristic roots of M.

» M\(M) is called the spectral radius of M.
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Some Results on Nonnegative Matrices

Proposition 6.10 (Perron-Frobenius Theorem)

1. Let M € RNXN pe a positive matrix.

>

>
>

A(M) >0, A\(M) is an eigenvalue of M, and there exists
a positive eigenvector that belongs to A(M).

A(M) is a simple root of the characteristic equation.

An eigenvector that belongs to A(M) is unique (up to
multiplication).

If Mz =pz, u>0, for some z >0, z# 0, then u = A(M).
IFM > L >0 and M # L, then \(M) > A(L).

2. Let M € RN*N be a nonnegative matrix.

>

>

A(M) is an eigenvalue of M, and there exists a nonnegative
eigenvector that belongs to A(M).

IFM > L > O, then N(M) > \(L).
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