6. Negative (Semi-)Definite Matrices

Daisuke Oyama

Mathematics II

May 2, 2025

Some Facts from Linear Algebra

Let $M \in \mathbb{R}^{N \times N}$.

• *M* is said to be *nonsingular* if there exists $A \in \mathbb{R}^{N \times N}$ such that MA = AM = I.

In this case, A is called the $\mathit{inverse matrix}$ of M and denoted by $M^{-1}.$

- The following are equivalent:
 - M is nonsingular.
 - $\blacktriangleright \operatorname{rank} M = N.$
 - $\blacktriangleright |M| \neq 0.$
 - ▶ ${z \in \mathbb{R}^N \mid Mz = 0} = {0}.$
 - \triangleright 0 is not a characteristic root of M.

Some Facts from Linear Algebra Let $M \in \mathbb{R}^{N \times N}$.

• The equation in λ ,

 $|M - \lambda I| = 0,$

is called the *characteristic equation* of M.

- The characteristic equation of M has N solutions in C (counted with multiplicity).
- ▶ The solutions to the characteristic equation of *M* are called the *characteristic roots* of *M*.
- If $\lambda_1, \ldots, \lambda_N$ are the characteristic roots of M, then $|M| = \prod_{n=1}^N \lambda_n$.
- If M is nonsingular and λ₁,..., λ_N are its characteristic roots, then λ₁⁻¹,..., λ_N⁻¹ are the characteristic roots of M⁻¹.

Some Facts from Linear Algebra

Let $M \in \mathbb{R}^{N \times N}$.

▶ $\lambda \in \mathbb{C}$ is an *eigenvalue* of M if there exists $z \in \mathbb{C}^N$ with $z \neq 0$ such that

 $Mz = \lambda z.$

In this case, z is called an *eigenvector* of M that corresponds (or belongs) to λ .

 λ is an eigenvalue of M if and only if it is a characteristic root of M.

Some Facts from Linear Algebra

Let $M \in \mathbb{R}^{N \times N}$ be a symmetric matrix.

- ▶ All the eigenvalues (hence characteristic roots) of *M* are real.
- ► Each eigenvalue of *M* has real eigenvectors.
- ▶ $\exists U \in \mathbb{R}^{N \times N}$ orthogonal (i.e., $U^{\mathrm{T}}U = UU^{\mathrm{T}} = I$) such that

$$U^{\mathrm{T}}MU = \begin{pmatrix} \lambda_1 & & O \\ & \ddots & \\ O & & \lambda_N \end{pmatrix} \quad (= \operatorname{diag}(\lambda_1, \dots, \lambda_N)),$$

where $\lambda_1, \ldots, \lambda_N \in \mathbb{R}$ are the eigenvalues of M.

• If M is nonsingular, then M^{-1} is symmetric.

Negative (Semi-)Definite Matrices

Definition 6.1 • $M \in \mathbb{R}^{N \times N}$ is negative semi-definite if $z \cdot Mz < 0$ for all $z \in \mathbb{R}^N$. \blacktriangleright $M \in \mathbb{R}^{N \times N}$ is negative definite if $z \cdot Mz < 0$ for all $z \in \mathbb{R}^N$ with $z \neq 0$. • $M \in \mathbb{R}^{N \times N}$ is positive definite (positive semi-definite, resp.) if -M is negative definite (negative semi-definite, resp.).

Remark

In many math books,

negative definiteness is defined only for symmetric matrices, or for quadratic forms $\sum_{i,j=1}^{N} a_{ij} z_i z_j$.

(Any quadratic form is written as $z \cdot Mz$ for some symmetric M.)

Sometimes, matrices (not necessarily symmetric) that are negative definite in our sense are called negative quasi-definite. Example: Negative (Semi-)Definiteness of Jacobi Matrices

Let $X \subset \mathbb{R}^N$ be a non-empty open convex set.

Suppose that $f: X \to \mathbb{R}^N$ is differentiable.

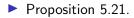
- 1. $(y-x) \cdot (f(y) f(x)) \le 0$ for all $x, y \in X$ if and only if Df(x) is negative semi-definite for all $x \in X$.
- 2. If Df(x) is negative definite for all $x \in X$, then $(y-x) \cdot (f(y) - f(x)) < 0$ for all $x, y \in X$, $x \neq y$.
- ▶ For N = 1, " $(y - x) \cdot (f(y) - f(x)) \le 0$ (< 0) for all $x, y \in X$ " implies that f is nonincreasing (strictly decreasing).
- Cf. Proposition 5.20.

Example: Negative (Semi-)Definiteness of Hesse Matrices

Let $X \subset \mathbb{R}^N$ be a non-empty open convex set.

Suppose that $f: X \to \mathbb{R}$ is differentiable and ∇f is differentiable.

- 1. f is concave if and only if $D^2 f(x)$ is negative semi-definite for all $x \in X$.
- 2. If $D^2 f(x)$ is negative definite for all $x \in X$, then f is strictly concave.



Characterizations of Negative (Semi-)Definiteness

Proposition 6.1

Let $M \in \mathbb{R}^{N \times N}$.

- 1. *M* is negative definite $\iff M + M^{T}$ is negative definite.
- 2. Suppose that M is symmetric. M is negative definite \iff all the characteristic roots of M are negative.
- 3. M is negative definite

 $\implies M$ is nonsingular and M^{-1} is negative definite.

Proof

- 1. For any $z \in \mathbb{R}^N$, $z^{\mathrm{T}}(M + M^{\mathrm{T}})z = 2z^{\mathrm{T}}Mz$.
- 2. Since $M = U^{T} \operatorname{diag}(\lambda_{1}, \dots, \lambda_{N})U$ for some U orthogonal (hence nonsingular),

$$z^{\mathrm{T}}Mz < 0 \text{ for all } z \in \mathbb{R}^{N} \setminus \{0\}$$

$$\iff (Uz)^{\mathrm{T}} \operatorname{diag}(\lambda_{1}, \dots, \lambda_{N})(Uz) < 0 \text{ for all } z \in \mathbb{R}^{N} \setminus \{0\}$$

$$\iff \sum_{n=1}^{N} \lambda_{n}(y_{n})^{2} = y^{\mathrm{T}} \operatorname{diag}(\lambda_{1}, \dots, \lambda_{N})y < 0$$

for all $y \in \{Uz \mid z \in \mathbb{R}^{N} \setminus \{0\}\} = \mathbb{R}^{N} \setminus \{0\}$

$$\iff \lambda_{1}, \dots, \lambda_{N} < 0.$$

3. Suppose Mz = 0. Then $z^{\mathrm{T}}(M + M^{\mathrm{T}})z = 0$. Thus, if M is negative definite (and so is $M + M^{\mathrm{T}}$), we must have z = 0.

Take any
$$z \in \mathbb{R}^N$$
, $z \neq 0$.
Let $x = M^{-1}z \ (\neq 0)$. Then $z = Mx$.

Then we have

$$z^{\mathrm{T}}M^{-1}z = (Mx)^{\mathrm{T}}M^{-1}(Mx)$$
$$= x^{\mathrm{T}}M^{\mathrm{T}}x = x^{\mathrm{T}}Mx < 0.$$

Characterizations of Negative (Semi-)Definiteness

Proposition 6.2 Let $M \in \mathbb{R}^{N \times N}$ be symmetric.

- 1. *M* is negative semi-definite $\iff \exists B \in \mathbb{R}^{N \times N}$ such that $M = -B^{\mathrm{T}}B$.
- 2. *M* is negative definite $\iff \exists B \in \mathbb{R}^{N \times N}$ nonsingular such that $M = -B^{T}B$.

Proof

► The "if" part:

Suppose that $M = -B^{\mathrm{T}}B$. Then for any $z \in \mathbb{R}^N$,

$$z^{\mathrm{T}}Mz = -z^{\mathrm{T}}B^{\mathrm{T}}Bz = -\|Bz\|^{2} \le 0.$$

• If B is nonsingular and $z \neq 0$, then $||Bz|| \neq 0$.

Proof

The "only if" part:

Since M is symmetric, we have $U^{\mathrm{T}}MU = \begin{pmatrix} \lambda_1 & & O \\ & \ddots & \\ O & & \lambda_N \end{pmatrix}$

for some U orthogonal (hence nonsingular).

If M is negative semi-definite, then $\lambda_1, \ldots, \lambda_N \leq 0$.

• Let
$$B = \begin{pmatrix} \sqrt{-\lambda_1} & O \\ & \ddots & \\ O & \sqrt{-\lambda_N} \end{pmatrix} U^{\mathrm{T}}.$$

Then $-B^{\mathrm{T}}B = U \begin{pmatrix} \lambda_1 & O \\ & \ddots & \\ O & & \lambda_N \end{pmatrix} U^{\mathrm{T}} = M.$

lf M is negative definite, then $\lambda_1, \ldots, \lambda_N < 0$, so that B is nonsingular.

Characterizations of Negative (Semi-)Definiteness

Proposition 6.3

Let $M \in \mathbb{R}^{N \times N}$ be symmetric. M is negative definite $\iff (-1)^r |_r M_r| > 0$ for all $r = 1, \dots, N$.

- ▶ $_rM_r \in \mathbb{R}^{r \times r}$ is the $r \times r$ submatrix of M obtained by deleting the last N r columns and rows of M, which is called the *leading principal submatrix* of order r of M.
- \triangleright $|_r M_r|$ is called the *leading principal minor* of order r of M.
- ▶ $_rM \in \mathbb{R}^{r \times N}$ will denote the $r \times N$ submatrix of M obtained by deleting the last N r rows of M.

Proof

The "only if" part:

If M is negative definite, then ${}_rM_r$ is negative definite and its characteristic roots $\lambda_1, \ldots, \lambda_r$ are all negative, and thus,

$$(-1)^r |_r M_r| = (-\lambda_1) \times \cdots \times (-\lambda_r) > 0.$$

► The "if" part: by induction:

Trivial for N = 1.

• Assume that the assertion holds for N-1.

Suppose that $(-1)^r|_r M_r| > 0$ for all r = 1, ..., N. Then $L = {}_{N-1}M_{N-1}$ is negative definite by the induction hypothesis.

Hence,

- L is nonsingular, and
- $L = -\tilde{B}^{\mathrm{T}}\tilde{B}$ for some nonsingular \tilde{B} .

Proof

• Write
$$M = \begin{pmatrix} L & b \\ b^{\mathrm{T}} & a_{NN} \end{pmatrix}$$
, where $b \in \mathbb{R}^{(N-1) \times 1}$.
• Let $U = \begin{pmatrix} I_{N-1} & L^{-1}b \\ 0^{\mathrm{T}} & 1 \end{pmatrix}$.
Then one can verify that $M = U^{\mathrm{T}} \begin{pmatrix} L & 0 \\ 0^{\mathrm{T}} & c \end{pmatrix} U$,
where $c = a_{NN} - b^{\mathrm{T}}L^{-1}b$.

• Thus,
$$|M| = c|L|$$
.

But by assumption, $(-1)^N |{\cal M}| > 0$ and $(-1)^{N-1} |L| > 0,$ so that c < 0.

► Let
$$B = \begin{pmatrix} \tilde{B} & 0 \\ 0^{\mathrm{T}} & \sqrt{-c} \end{pmatrix} U$$
, which is nonsingular, where $L = -\tilde{B}^{\mathrm{T}}\tilde{B}$.

Then $M = -B^{\mathrm{T}}B$. Hence, M is negative definite.

Note

• " $(-1)^r |_r M_r| \ge 0$ for all $r = 1, \ldots, N$ " does not imply that M is negative semi-definite.

For example,

$$M = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

satisfies this condition $((-1)|_1M_1| = (-1)^2|M| = 0)$, but is not negative semi-definite.

Characterizations of Negative (Semi-)Definiteness

Proposition 6.4

Let $M \in \mathbb{R}^{N \times N}$.

1. Suppose that M is symmetric.

M is negative semi-definite $\iff (-1)^r |_r M_r^{\pi}| \ge 0$ for all r = 1, ..., N and for all permutations π of $\{1, ..., N\}$.

2. If (not necessarily symmetric) M is negative semi-definite, then $(-1)^r |_r M_r^{\pi}| \ge 0$ for all r = 1, ..., N and for all permutations π of $\{1, ..., N\}$.

Application to Concave Functions

Denote
$$f_{ij}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x)$$
.
• $f(x_1, x_2)$ is strictly concave
 $\iff D^2 f(x_1, x_2)$ is negative definite $\forall (x_1, x_2)$
 $\iff (-1)f_{11} > 0$ and $(-1)^2 \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} > 0 \quad \forall (x_1, x_2)$
 $\iff f_{11} < 0$ and $f_{11}f_{22} - (f_{12})^2 > 0 \quad \forall (x_1, x_2)$
• $f(x_1, x_2)$ is concave
 $\iff D^2 f(x_1, x_2)$ is negative semi-definite $\forall (x_1, x_2)$
 $\iff (-1)f_{11} \ge 0, \ (-1)^2 \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix} \ge 0,$
 $(-1)f_{22} \ge 0, \text{ and } (-1)^2 \begin{vmatrix} f_{22} & f_{21} \\ f_{12} & f_{11} \end{vmatrix} \ge 0 \quad \forall (x_1, x_2)$
 $\iff f_{11} \le 0, \ f_{22} \le 0, \text{ and } f_{11}f_{22} - (f_{12})^2 \ge 0 \quad \forall (x_1, x_2)$

Characterizations of Negative (Semi-)Definiteness

Proposition 6.5

Let $M \in \mathbb{R}^{N \times N}$ be symmetric, and $B \in \mathbb{R}^{N \times S}$ with $S \leq N$ be such that rank B = S. Let $W = \{z \in \mathbb{R}^N \mid B^T z = 0\}.$

1. M is negative definite on W if and only if

$$(-1)^r \begin{vmatrix} {}^r M_r & {}^r B \\ ({}^r B)^{\rm T} & 0 \end{vmatrix} > 0$$

for all
$$r = S + 1, ..., N$$
.

2. M is negative semi-definite on W if and only if

$$(-1)^r \begin{vmatrix} {}^{r}M_{r}^{\pi} & {}^{r}B^{\pi} \\ ({}^{r}B^{\pi})^{\mathrm{T}} & 0 \end{vmatrix} \ge 0$$

for all r = S + 1, ..., N and for all permutations π of $\{1, ..., N\}$.

Application to Quasi-Concave Functions

Denote
$$f_i(x) = \frac{\partial f}{\partial x_i}(x)$$
 and $f_{ij}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x)$.

$$\begin{aligned} & f(x_1, x_2) \text{ is strictly quasi-concave} \\ & \leftarrow D^2 f(x_1, x_2) \text{ is negative definite on } T_{\nabla f(x_1, x_2)} \ \forall (x_1, x_2) \\ & \leftrightarrow (-1)^2 \begin{vmatrix} f_{11} & f_{12} & f_1 \\ f_{21} & f_{22} & f_2 \\ f_1 & f_2 & 0 \end{vmatrix} > 0 \quad \forall (x_1, x_2) \\ & \leftrightarrow 2f_1 f_2 f_{12} - (f_1)^2 f_{22} - (f_2)^2 f_{11} > 0 \quad \forall (x_1, x_2) \end{aligned}$$

where
$$T_{\nabla f(x_1, x_2)} = \{ z \in \mathbb{R}^N \mid \nabla f(x_1, x_2) \cdot z = 0 \}.$$

Characterizations of Negative (Semi-)Definiteness

....

For
$$p \in \mathbb{R}^N$$
, we denote $T_p = \{z \in \mathbb{R}^N \mid p \cdot z = 0\}$.
Proposition 6.6
Let $M \in \mathbb{R}^{N \times N}$,
and suppose that $p \gg 0$, $Mp = 0$, and $M^T p = 0$.
Let $\hat{M} \in \mathbb{R}^{(N-1) \times (N-1)}$ be the matrix obtained by deleting
the nth row and column for some n .

- 1. If rank M = N 1, then rank $\hat{M} = N 1$.
- 2. If *M* is negative definite on T_p , then *M* is negative definite on $\mathbb{R}^N \setminus \{z \in \mathbb{R}^N \mid z = \lambda p \text{ for some } \lambda \in \mathbb{R}\}.$
- 3. *M* is negative definite on T_p if and only if \hat{M} is negative definite.

Stable Matrices

Definition 6.2

 $M \in \mathbb{R}^{N \times N}$ is *stable* if all of its characteristic roots have a negative real part.

Proposition 6.7

For $M \in \mathbb{R}^{N \times N}$ and $K \in \mathbb{R}^{N \times N}$, suppose that M is negative definite and K is symmetric. Then KM is stable if and only if K is positive definite.

Some Other Results

Definition 6.3 $M = (a_{ij}) \in \mathbb{R}^{N \times N}$ has a *dominant diagonal* if there exists $p \gg 0$ such that $|p_i a_{ii}| > \sum_{j \neq i} |p_j a_{ij}|$ for all i = 1, ..., N.

Definition 6.4

- $M = (a_{ij}) \in \mathbb{R}^{N \times N}$ has the gross substitute sign pattern if $a_{ij} > 0$ for all i, j with $i \neq j$.
- $M = (a_{ij}) \in \mathbb{R}^{N \times N}$ is a *Metzler matrix* if $a_{ij} \ge 0$ for all i, j with $i \ne j$.
- M is a *Z*-matrix if -M is a Metzler matrix.
- Obviously, if M has the gross substitute sign pattern, then it is a Metzler matrix.

Some Other Results

Proposition 6.8 Let $M \in \mathbb{R}^{N \times N}$.

- 1. If M has a dominant diagonal, then it is nonsingular.
- 2. Suppose that M is symmetric. If M has a negative and dominant diagonal, then it is negative definite.
- 3. If M is a Metzler matrix and if $Mp \ll 0$ and $M^{T}p \ll 0$ for some $p \gg 0$, then M is negative definite.
- 4. If M has the gross substitute sign pattern and if Mp = 0 and $M^{T}p = 0$ for some $p \gg 0$, then \hat{M} is negative definite, where $\hat{M} \in \mathbb{R}^{(N-1)\times(N-1)}$ is the matrix obtained by deleting the *n*th row and column for some *n*.

Proof

1. Suppose that Mz = 0. We want to show that z = 0. Let $p \gg 0$ be as in the definition of diagonal dominance. Let $y_i = z_i/p_i$, and let i be such that $|y_i| \ge |y_j|$ for all j. Since $a_{ii}(p_iy_i) = -\sum_{j \neq i} a_{ij}(p_jy_j)$, we have

$$|p_i a_{ii}||y_i| = \left|\sum_{j \neq i} p_j a_{ij} y_j\right| \le \sum_{j \neq i} |p_j a_{ij}||y_j| \le \sum_{j \neq i} |p_j a_{ij}||y_i|,$$

and hence $\left(|p_i a_{ii}| - \sum_{j \neq i} |p_j a_{ij}|\right) |y_i| \le 0.$

Since $|p_i a_{ii}| - \sum_{j \neq i} |p_j a_{ij}| > 0$ by the dominant diagonal, it follows that $|y_i| = 0$, which implies that z = 0.

2. We show that all the eigenvalues of M are negative.

Let $\lambda \in \mathbb{R}$ be any eigenvalue of M, and let $z \in \mathbb{R}^N$, $z \neq 0$, be a corresponding eigenvector, i.e., we have $Mz = \lambda z$.

Let $y_i = z_i/p_i$, and let i be such that $|y_i| \ge |y_j|$ for all j, where $|y_i| \ne 0$.

Since $(a_{ii} - \lambda)(p_i z_i) = -\sum_{j \neq i} a_{ij}(p_j z_j)$, we have

$$\begin{aligned} |p_i a_{ii} - p_i \lambda| |y_i| &= \left| \sum_{j \neq i} p_j a_{ij} y_j \right| \le \sum_{j \neq i} |p_j a_{ij}| |y_j| \\ &\le \sum_{j \neq i} |p_j a_{ij}| |y_i| < |p_i a_{ii}| |y_i| \end{aligned}$$

by the dominant diagonal, and hence $|a_{ii} - \lambda| < |a_{ii}|$.

By $a_{ii} < 0$, this holds if and only if $2a_{ii} < \lambda < 0$, in particular only if $\lambda < 0$.

3. We show that $M + M^{T}$ is a negative and dominant diagonal, which implies that $M + M^{T}$ is negative definite by 2.

By
$$Mp \ll 0$$
 and $M^T p \ll 0$ where $p \gg 0$, we have
 $p_i(2a_{ii}) < -\sum_{j \neq i} p_j(a_{ij} + a_{ji})$ for all i .
By $a_{ij} \ge 0$ for all $i \ne j$, we have $2a_{ii} < 0$ and $|p_i(2a_{ii})| = -p_i(2a_{ii}) > \sum_{j \ne i} p_j(a_{ij} + a_{ji}) = \sum_{j \ne i} |p_j(a_{ij} + a_{ji})|$ for all

4. Take any n = 1, ..., N, and let \hat{M} be the $(N - 1) \times (N - 1)$ matrix obtained by deleting the *n*th row and column.

By the assumptions, \hat{M} is a Metzler matrix, and for all $i \neq n$, $\sum_{j\neq n} p_j a_{ij} = -p_n a_{in} < 0$ and $\sum_{j\neq n} p_j a_{ji} = -p_n a_{ni} < 0$, so that $\hat{M}p \ll 0$ and $\hat{M}^{\mathrm{T}}p \ll 0$.

Hence, by 3, \hat{M} is negative definite.

i.

Some Results on Nonnegative Matrices

▶
$$M = (a_{ij}) \in \mathbb{R}^{N \times N}$$
 is called a *nonnegative* (*positive*) *matrix* if $a_{ij} \ge 0$ ($a_{ij} > 0$) for all $i, j = 1, ..., N$.

Some Results on Nonnegative Matrices I

Proposition 6.9

For a nonnegative matrix $M \in \mathbb{R}^{N \times N}$, the following conditions are equivalent:

- 1. For every $c \ge 0$, there exists $z \ge 0$ such that Mz + c = z.
- 2. There exists $z \ge 0$ such that $Mz \ll z$.
- 3. There exists $z \gg 0$ such that $Mz \ll z$.
- 4. $|_r(I-M)_r| > 0$ for all $r = 1, \ldots, N$ ("Hawkins-Simon condition").
- 5. There exist lower and upper triangular matrices L and U with positive diagonals and nonpositive off-diagonals such that I M = LU.
- 6. I M is nonsingular, and $(I M)^{-1} \ge 0$.

Some Results on Nonnegative Matrices II

Proposition 6.9

- 7. $|\lambda_i| < 1$ for all i = 1, ..., N, where $\lambda_1, ..., \lambda_N$ are the characteristic roots of M.
- 8. $\lim_{k\to\infty}\sum_{\ell=0}^k M^\ell$ exists (which is equal to $(I-M)^{-1}$).
- 9. $\lim_{k\to\infty} M^k = O.$

Spectral Radius

• For
$$M \in \mathbb{R}^{N \times N}$$
, let
 $\lambda(M) = \max\{|\lambda_1|, \dots, |\lambda_N|\},\$
where $\lambda_1, \dots, \lambda_N$ are the characteristic roots of M .

• $\lambda(M)$ is called the *spectral radius* of M.

Some Results on Nonnegative Matrices

Proposition 6.10 (Perron-Frobenius Theorem)

- 1. Let $M \in \mathbb{R}^{N \times N}$ be a positive matrix.
 - λ(M) > 0, λ(M) is an eigenvalue of M, and there exists a positive eigenvector that belongs to λ(M).
 - $\lambda(M)$ is a simple root of the characteristic equation.
 - An eigenvector that belongs to λ(M) is unique (up to multiplication).
 - If $Mz = \mu z$, $\mu \ge 0$, for some $z \ge 0$, $z \ne 0$, then $\mu = \lambda(M)$.

• If $M \ge L \ge O$ and $M \ne L$, then $\lambda(M) > \lambda(L)$.

- 2. Let $M \in \mathbb{R}^{N \times N}$ be a nonnegative matrix.
 - λ(M) is an eigenvalue of M, and there exists a nonnegative eigenvector that belongs to λ(M).

• If $M \ge L \ge O$, then $\lambda(M) \ge \lambda(L)$.