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Some Facts from Linear Algebra

Let M ∈ RN×N .

▶ M is said to be nonsingular if there exists A ∈ RN×N

such that MA = AM = I.

In this case, A is called the inverse matrix of M and
denoted by M−1.

▶ The following are equivalent:

▶ M is nonsingular.

▶ rankM = N .

▶ |M | ̸= 0.

▶ {z ∈ RN | Mz = 0} = {0}.
▶ 0 is not a characteristic root of M .
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Some Facts from Linear Algebra
Let M ∈ RN×N .

▶ The equation in λ,

|M − λI| = 0,

is called the characteristic equation of M .

▶ The characteristic equation of M has N solutions in C
(counted with multiplicity).

▶ The solutions to the characteristic equation of M are called
the characteristic roots of M .

▶ If λ1, . . . , λN are the characteristic roots of M , then
|M | =

∏N
n=1 λn.

▶ If M is nonsingular and λ1, . . . , λN are its characteristic roots,
then λ−1

1 , . . . , λ−1
N are the characteristic roots of M−1.
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Some Facts from Linear Algebra

Let M ∈ RN×N .

▶ λ ∈ C is an eigenvalue of M if there exists z ∈ CN with z ̸= 0
such that

Mz = λz.

In this case, z is called an eigenvector of M that corresponds
(or belongs) to λ.

▶ λ is an eigenvalue of M if and only if it is a characteristic root
of M .
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Some Facts from Linear Algebra

Let M ∈ RN×N be a symmetric matrix.

▶ All the eigenvalues (hence characteristic roots) of M are real.

▶ Each eigenvalue of M has real eigenvectors.

▶ ∃U ∈ RN×N orthogonal (i.e., UTU = UUT = I) such that

UTMU =

λ1 O
. . .

O λN

 (= diag(λ1, . . . , λN )),

where λ1, . . . , λN ∈ R are the eigenvalues of M .

▶ If M is nonsingular, then M−1 is symmetric.
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Negative (Semi-)Definite Matrices

Definition 6.1
▶ M ∈ RN×N is negative semi-definite if

z ·Mz ≤ 0

for all z ∈ RN .

▶ M ∈ RN×N is negative definite if

z ·Mz < 0

for all z ∈ RN with z ̸= 0.

▶ M ∈ RN×N is positive definite (positive semi-definite, resp.)
if −M is negative definite (negative semi-definite, resp.).
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Remark

▶ In many math books,
negative definiteness is defined only for symmetric matrices, or
for quadratic forms

∑N
i,j=1 aijzizj .

(Any quadratic form is written as z ·Mz for some symmetric M .)

▶ Sometimes, matrices (not necessarily symmetric) that are
negative definite in our sense are called negative quasi-definite.
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Example: Negative (Semi-)Definiteness of Jacobi Matrices

Let X ⊂ RN be a non-empty open convex set.

Suppose that f : X → RN is differentiable.

1. (y − x) · (f(y)− f(x)) ≤ 0 for all x, y ∈ X if and only if
Df(x) is negative semi-definite for all x ∈ X.

2. If Df(x) is negative definite for all x ∈ X, then
(y − x) · (f(y)− f(x)) < 0 for all x, y ∈ X, x ̸= y.

▶ For N = 1,
“(y − x) · (f(y)− f(x)) ≤ 0 (< 0) for all x, y ∈ X” implies
that f is nonincreasing (strictly decreasing).

▶ Cf. Proposition 5.20.
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Example: Negative (Semi-)Definiteness of Hesse Matrices

Let X ⊂ RN be a non-empty open convex set.

Suppose that f : X → R is differentiable and ∇f is differentiable.

1. f is concave if and only if
D2f(x) is negative semi-definite for all x ∈ X.

2. If D2f(x) is negative definite for all x ∈ X, then
f is strictly concave.

▶ Proposition 5.21.
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Characterizations of Negative (Semi-)Definiteness

Proposition 6.1

Let M ∈ RN×N .

1. M is negative definite
⇐⇒ M +MT is negative definite.

2. Suppose that M is symmetric.
M is negative definite
⇐⇒ all the characteristic roots of M are negative.

3. M is negative definite
=⇒ M is nonsingular and M−1 is negative definite.
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Proof

1. For any z ∈ RN , zT(M +MT)z = 2zTMz.

2. Since M = UT diag(λ1, . . . , λN )U for some U orthogonal
(hence nonsingular),

zTMz < 0 for all z ∈ RN \ {0}
⇐⇒ (Uz)T diag(λ1, . . . , λN )(Uz) < 0 for all z ∈ RN \ {0}
⇐⇒

∑N
n=1λn(yn)

2 = yT diag(λ1, . . . , λN )y < 0

for all y ∈ {Uz | z ∈ RN \ {0}} = RN \ {0}
⇐⇒ λ1, . . . , λN < 0.
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3. Suppose Mz = 0. Then zT(M +MT)z = 0.
Thus, if M is negative definite (and so is M +MT),
we must have z = 0.

Take any z ∈ RN , z ̸= 0.

Let x = M−1z ( ̸= 0). Then z = Mx.

Then we have

zTM−1z = (Mx)TM−1(Mx)

= xTMTx = xTMx < 0.
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Characterizations of Negative (Semi-)Definiteness

Proposition 6.2

Let M ∈ RN×N be symmetric.

1. M is negative semi-definite
⇐⇒ ∃B ∈ RN×N such that M = −BTB.

2. M is negative definite
⇐⇒ ∃B ∈ RN×N nonsingular such that M = −BTB.
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Proof

▶ The “if” part:

Suppose that M = −BTB. Then for any z ∈ RN ,

zTMz = −zTBTBz = −∥Bz∥2 ≤ 0.

▶ If B is nonsingular and z ̸= 0, then ∥Bz∥ ̸= 0.
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Proof
▶ The “only if” part:

Since M is symmetric, we have UTMU =

λ1 O
. . .

O λN


for some U orthogonal (hence nonsingular).

If M is negative semi-definite, then λ1, . . . , λN ≤ 0.

▶ Let B =


√
−λ1 O

. . .

O
√
−λN

UT.

Then −BTB = U

λ1 O
. . .

O λN

UT = M .

▶ If M is negative definite, then λ1, . . . , λN < 0,
so that B is nonsingular.
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Characterizations of Negative (Semi-)Definiteness

Proposition 6.3

Let M ∈ RN×N be symmetric.
M is negative definite
⇐⇒ (−1)r|rMr| > 0 for all r = 1, . . . , N .

▶ rMr ∈ Rr×r is the r × r submatrix of M obtained by deleting
the last N − r columns and rows of M ,
which is called the leading principal submatrix of order r of M .

▶ |rMr| is called the leading principal minor of order r of M .

▶ rM ∈ Rr×N will denote the r ×N submatrix of M obtained by

deleting the last N − r rows of M .
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Proof
▶ The “only if” part:

If M is negative definite, then rMr is negative definite and
its characteristic roots λ1, . . . , λr are all negative, and thus,

(−1)r|rMr| = (−λ1)× · · · × (−λr) > 0.

▶ The “if” part: by induction:

Trivial for N = 1.

▶ Assume that the assertion holds for N − 1.

Suppose that (−1)r|rMr| > 0 for all r = 1, . . . , N .
Then L = N−1MN−1 is negative definite by the induction
hypothesis.

Hence,

▶ L is nonsingular, and

▶ L = −B̃TB̃ for some nonsingular B̃.
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Proof

▶ Write M =

(
L b
bT aNN

)
, where b ∈ R(N−1)×1.

▶ Let U =

(
IN−1 L−1b
0T 1

)
.

Then one can verify that M = UT

(
L 0
0T c

)
U ,

where c = aNN − bTL−1b.

▶ Thus, |M | = c|L|.

But by assumption, (−1)N |M | > 0 and (−1)N−1|L| > 0, so
that c < 0.

▶ Let B =

(
B̃ 0
0T

√
−c

)
U , which is nonsingular,

where L = −B̃TB̃.

Then M = −BTB. Hence, M is negative definite.
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Note

▶ “(−1)r|rMr| ≥ 0 for all r = 1, . . . , N” does not imply
that M is negative semi-definite.

▶ For example,

M =

(
0 0
0 1

)
satisfies this condition ((−1)|1M1| = (−1)2|M | = 0),
but is not negative semi-definite.
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Characterizations of Negative (Semi-)Definiteness

Proposition 6.4

Let M ∈ RN×N .

1. Suppose that M is symmetric.

M is negative semi-definite
⇐⇒ (−1)r|rMπ

r | ≥ 0 for all r = 1, . . . , N and
for all permutations π of {1, . . . , N}.

2. If (not necessarily symmetric) M is negative semi-definite,
then (−1)r|rMπ

r | ≥ 0 for all r = 1, . . . , N and
for all permutations π of {1, . . . , N}.
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Application to Concave Functions

Denote fij(x) =
∂2f

∂xj∂xi
(x).

▶ f(x1, x2) is strictly concave
⇐= D2f(x1, x2) is negative definite ∀ (x1, x2)

⇐⇒ (−1)f11 > 0 and (−1)2
∣∣∣∣f11 f12
f21 f22

∣∣∣∣ > 0 ∀ (x1, x2)

⇐⇒ f11 < 0 and f11f22 − (f12)
2 > 0 ∀ (x1, x2)

▶ f(x1, x2) is concave
⇐⇒ D2f(x1, x2) is negative semi-definite ∀ (x1, x2)

⇐⇒ (−1)f11 ≥ 0, (−1)2
∣∣∣∣f11 f12
f21 f22

∣∣∣∣ ≥ 0,

(−1)f22 ≥ 0, and (−1)2
∣∣∣∣f22 f21
f12 f11

∣∣∣∣ ≥ 0 ∀ (x1, x2)

⇐⇒ f11 ≤ 0, f22 ≤ 0, and f11f22 − (f12)
2 ≥ 0 ∀ (x1, x2)

20 / 34



Characterizations of Negative (Semi-)Definiteness

Proposition 6.5

Let M ∈ RN×N be symmetric, and B ∈ RN×S with S ≤ N be
such that rankB = S. Let W = {z ∈ RN | BT z = 0}.
1. M is negative definite on W if and only if

(−1)r
∣∣∣∣ rMr rB
(rB)T 0

∣∣∣∣ > 0

for all r = S + 1, . . . , N .

2. M is negative semi-definite on W if and only if

(−1)r
∣∣∣∣ rM

π
r rB

π

(rB
π)T 0

∣∣∣∣ ≥ 0

for all r = S + 1, . . . , N and for all permutations π of
{1, . . . , N}.
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Application to Quasi-Concave Functions

Denote fi(x) =
∂f
∂xi

(x) and fij(x) =
∂2f

∂xj∂xi
(x).

▶ f(x1, x2) is strictly quasi-concave
⇐= D2f(x1, x2) is negative definite on T∇f(x1,x2) ∀ (x1, x2)

⇐⇒ (−1)2

∣∣∣∣∣∣
f11 f12 f1
f21 f22 f2
f1 f2 0

∣∣∣∣∣∣ > 0 ∀ (x1, x2)

⇐⇒ 2f1f2f12 − (f1)
2f22 − (f2)

2f11 > 0 ∀ (x1, x2)

where T∇f(x1,x2) = {z ∈ RN | ∇f(x1, x2) · z = 0}.
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Characterizations of Negative (Semi-)Definiteness

For p ∈ RN , we denote Tp = {z ∈ RN | p · z = 0}.

Proposition 6.6

Let M ∈ RN×N ,
and suppose that p ≫ 0, Mp = 0, and MTp = 0.
Let M̂ ∈ R(N−1)×(N−1) be the matrix obtained by deleting
the nth row and column for some n.

1. If rankM = N − 1, then rank M̂ = N − 1.

2. If M is negative definite on Tp, then M is negative definite on
RN \ {z ∈ RN | z = λp for some λ ∈ R}.

3. M is negative definite on Tp if and only if
M̂ is negative definite.
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Stable Matrices

Definition 6.2
M ∈ RN×N is stable if all of its characteristic roots have
a negative real part.

Proposition 6.7

For M ∈ RN×N and K ∈ RN×N ,
suppose that M is negative definite and K is symmetric.
Then KM is stable if and only if K is positive definite.
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Some Other Results

Definition 6.3
M = (aij) ∈ RN×N has a dominant diagonal if there exists p ≫ 0
such that |piaii| >

∑
j ̸=i|pjaij | for all i = 1, . . . , N .

Definition 6.4
▶ M = (aij) ∈ RN×N has the gross substitute sign pattern if

aij > 0 for all i, j with i ̸= j.

▶ M = (aij) ∈ RN×N is a Metzler matrix if aij ≥ 0 for all i, j
with i ̸= j.

▶ M is a Z-matrix if −M is a Metzler matrix.

▶ Obviously, if M has the gross substitute sign pattern,
then it is a Metzler matrix.
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Some Other Results

Proposition 6.8

Let M ∈ RN×N .

1. If M has a dominant diagonal, then it is nonsingular.

2. Suppose that M is symmetric.
If M has a negative and dominant diagonal,
then it is negative definite.

3. If M is a Metzler matrix and if Mp ≪ 0 and MTp ≪ 0 for
some p ≫ 0, then M is negative definite.

4. If M has the gross substitute sign pattern and
if Mp = 0 and MTp = 0 for some p ≫ 0,
then M̂ is negative definite,

where M̂ ∈ R(N−1)×(N−1) is the matrix obtained by deleting

the nth row and column for some n.

26 / 34



Proof

1. Suppose that Mz = 0. We want to show that z = 0.

Let p ≫ 0 be as in the definition of diagonal dominance.

Let yi = zi/pi, and let i be such that |yi| ≥ |yj | for all j.

Since aii(piyi) = −
∑

j ̸=i aij(pjyj), we have

|piaii||yi| =

∣∣∣∣∣∣
∑
j ̸=i

pjaijyj

∣∣∣∣∣∣ ≤
∑
j ̸=i

|pjaij ||yj | ≤
∑
j ̸=i

|pjaij ||yi|,

and hence
(
|piaii| −

∑
j ̸=i|pjaij |

)
|yi| ≤ 0.

Since |piaii| −
∑

j ̸=i|pjaij | > 0 by the dominant diagonal,
it follows that |yi| = 0, which implies that z = 0.
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2. We show that all the eigenvalues of M are negative.

Let λ ∈ R be any eigenvalue of M , and let z ∈ RN , z ̸= 0, be
a corresponding eigenvector, i.e., we have Mz = λz.

Let yi = zi/pi, and let i be such that |yi| ≥ |yj | for all j,
where |yi| ̸= 0.

Since (aii − λ)(pizi) = −
∑

j ̸=i aij(pjzj), we have

|piaii − piλ||yi| =

∣∣∣∣∣∣
∑
j ̸=i

pjaijyj

∣∣∣∣∣∣ ≤
∑
j ̸=i

|pjaij ||yj |

≤
∑
j ̸=i

|pjaij ||yi| < |piaii||yi|

by the dominant diagonal, and hence |aii − λ| < |aii|.

By aii < 0, this holds if and only if 2aii < λ < 0,
in particular only if λ < 0.
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3. We show that M +MT is a negative and dominant diagonal,
which implies that M +MT is negative definite by 2.

By Mp ≪ 0 and MTp ≪ 0 where p ≫ 0, we have
pi(2aii) < −

∑
j ̸=i pj(aij + aji) for all i.

By aij ≥ 0 for all i ̸= j, we have 2aii < 0 and |pi(2aii)| =
−pi(2aii) >

∑
j ̸=i pj(aij + aji) =

∑
j ̸=i|pj(aij + aji)| for all i.

4. Take any n = 1, . . . , N , and let M̂ be the (N − 1)× (N − 1)
matrix obtained by deleting the nth row and column.

By the assumptions, M̂ is a Metzler matrix, and for all i ̸= n,∑
j ̸=n pjaij = −pnain < 0 and

∑
j ̸=n pjaji = −pnani < 0, so

that M̂p ≪ 0 and M̂Tp ≪ 0.

Hence, by 3, M̂ is negative definite.
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Some Results on Nonnegative Matrices

▶ M = (aij) ∈ RN×N is called a nonnegative (positive) matrix
if aij ≥ 0 (aij > 0) for all i, j = 1, . . . , N .
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Some Results on Nonnegative Matrices I

Proposition 6.9

For a nonnegative matrix M ∈ RN×N ,
the following conditions are equivalent:

1. For every c ≥ 0, there exists z ≥ 0 such that Mz + c = z.

2. There exists z ≥ 0 such that Mz ≪ z.

3. There exists z ≫ 0 such that Mz ≪ z.

4. |r(I−M)r| > 0 for all r = 1, . . . , N (“Hawkins-Simon condition”).

5. There exist lower and upper triangular matrices L and U with
positive diagonals and nonpositive off-diagonals such that
I −M = LU .

6. I −M is nonsingular, and (I −M)−1 ≥ 0.
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Some Results on Nonnegative Matrices II

Proposition 6.9

7. |λi| < 1 for all i = 1, . . . , N ,
where λ1, . . . , λN are the characteristic roots of M .

8. limk→∞
∑k

ℓ=0M
ℓ exists (which is equal to (I −M)−1).

9. limk→∞Mk = O.
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Spectral Radius

▶ For M ∈ RN×N , let

λ(M) = max{|λ1|, . . . , |λN |},

where λ1, . . . , λN are the characteristic roots of M .

▶ λ(M) is called the spectral radius of M .
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Some Results on Nonnegative Matrices

Proposition 6.10 (Perron-Frobenius Theorem)

1. Let M ∈ RN×N be a positive matrix.

▶ λ(M) > 0, λ(M) is an eigenvalue of M , and there exists
a positive eigenvector that belongs to λ(M).

▶ λ(M) is a simple root of the characteristic equation.

▶ An eigenvector that belongs to λ(M) is unique (up to
multiplication).

▶ If Mz = µz, µ ≥ 0, for some z ≥ 0, z ̸= 0, then µ = λ(M).

▶ If M ≥ L ≥ O and M ≠ L, then λ(M) > λ(L).

2. Let M ∈ RN×N be a nonnegative matrix.

▶ λ(M) is an eigenvalue of M , and there exists a nonnegative
eigenvector that belongs to λ(M).

▶ If M ≥ L ≥ O, then λ(M) ≥ λ(L).
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