1. Real Numbers

Daisuke Oyama

Mathematics II

April 4, 2025

Notations

- $ightharpoonup
 begin{align*}
 black
 blac$
- $ightharpoonup \mathbb{Z}$: the set of integers
- Q: the set of rational numbers
- $ightharpoonup \mathbb{R}$: the set of real numbers

Properties of $\mathbb R$

(We do not discuss how to construct real numbers.)

- 1. Binary operations, addition + and multiplication ·, are defined (commutative, associative, distributive).
- Complete ordering ≤ is defined (complete, transitive, antisymmetric).
- 3. Every nonempty subset of \mathbb{R} that has an upper bound (or is bounded above) has a least upper bound (or supremum).
 - · · · "Axiom of Real Numbers"

▶ Property 3 is the property that differentiates \mathbb{R} from \mathbb{Q} .

 ${\mathbb Q}$ does not satisfy property 3.

Example:

$$A = \{x \in \mathbb{Q} \mid x^2 < 2\}$$
 has no least upper bound in \mathbb{Q} .

Maximum/Minimum

Let A be a subset of \mathbb{R} .

- lacksquare $x \in \mathbb{R}$ is the greatest element of A or the maximum of A, denoted $\max A$, if
 - $\triangleright x \in A$, and
 - $ightharpoonup a \le x$ for all $a \in A$.
- $x \in \mathbb{R}$ is the *least element* of A or the *minimum* of A, denoted $\min A$, if
 - $\triangleright x \in A$, and
 - $ightharpoonup x \leq a \text{ for all } a \in A.$

Upper/Lower Bounds, Supremum/Infimum

Let A be a nonempty subset of \mathbb{R} .

- $ightharpoonup x \in \mathbb{R}$ is an upper bound of A if $a \leq x$ for all $a \in A$.
- ▶ $x \in \mathbb{R}$ is the supremum of A, denoted sup A, if it is the least upper bound of A, i.e.,
 - ightharpoonup x is an upper bound of A, and
 - ▶ if y is an upper bound of A, then $x \leq y$.

Likewise,

- $ightharpoonup x \in \mathbb{R}$ is a lower bound of A if $x \leq a$ for all $a \in A$.
- ▶ $x \in \mathbb{R}$ is the infimum of A, denoted inf A, if it is the greatest lower bound of A.

Recap

Let A be a nonempty subset of \mathbb{R} .

- ▶ $\sup A = \text{least upper bound of } A$
- $ightharpoonup \inf A = \text{greatest lower bound of } A$
- Property 3 says that $\sup A$ exists if A is bounded above.
- ightharpoonup Property 3 implies that $\inf A$ exists if A is bounded below.

Example

Let
$$A = (0,1] = \{a \in \mathbb{R} \mid 0 < a \le 1\}.$$

- $ightharpoonup \min A$ does not exist, while $\inf A = 0$.

Characterization of \sup and \inf

Proposition 1.1

- 1. $x = \sup A$ if and only if
 - (i) $a \leq x$ for all $a \in A$, and
 - (ii) for all $\varepsilon > 0$, there exists $a \in A$ such that $x \varepsilon < a$.
- 2. $x = \inf A$ if and only if
 - (i) $x \leq a$ for all $a \in A$, and
 - (ii) for all $\varepsilon > 0$, there exists $a \in A$ such that $a < x + \varepsilon$.

Proposition 1.2 (Archimedean Property)

 \mathbb{N} is unbounded above (i.e., \mathbb{N} has no upper bound) in \mathbb{R} .

Proof

- ▶ Assume that N is bounded above.
- ▶ Then $\alpha = \sup \mathbb{N}$ exists by the Axiom of Real Numbers.
- ▶ By the definition of \sup , there is some $n \in \mathbb{N}$ such that $\alpha 1 < n$.
- ▶ Then $\alpha < n+1$, where $n+1 \in \mathbb{N}$.
- ▶ This contradicts the assumption that $\alpha = \sup \mathbb{N}$.

Proposition 1.3 (Denseness of \mathbb{Q} in \mathbb{R})

For any $a, b \in \mathbb{R}$ with a < b, there exists $r \in \mathbb{Q}$ such that a < r < b.

Proof

- ▶ We only consider the case where $0 \le a < b$.
- ▶ By the Archimedean Property, there is some $n \in \mathbb{N}$ such that $n > \frac{1}{b-a}$.
- ▶ Let $m \in \mathbb{N}$ be such that $m-1 \le na < m$. $\Rightarrow a < \frac{m}{n}$.
- ► Then

$$nb = na + n(b - a) > (m - 1) + 1 = m.$$

$$\Rightarrow \frac{m}{n} < b$$
.

ightharpoonup So let $r = \frac{m}{n}$.

Convergence in \mathbb{R}

▶ A sequence in \mathbb{R} is a function from \mathbb{N} to \mathbb{R} .

A sequence is denoted by $\{x^m\}_{m=1}^{\infty},$ or simply $\{x^m\},$ or $x^m.$

▶ A sequence $\{x^m\}_{m=1}^{\infty}$ converges to $\alpha \in \mathbb{R}$ if for any $\varepsilon > 0$, there exists a natural number M such that

$$|x^m - \alpha| < \varepsilon$$
 for all $m \ge M$.

In this case, we write

$$\lim_{m \to \infty} x^m = \alpha \qquad \text{or} \qquad x^m \to \alpha \text{ (as } m \to \infty).$$

- α is called the *limit* of $\{x^m\}_{m=1}^{\infty}$. (If $x^m \to \alpha$ and $x^m \to \beta$, then $\alpha = \beta$.)
- ▶ A sequence that converges to some $\alpha \in \mathbb{R}$ is said to be *convergent*.

Example

Let
$$x^m = \frac{1}{m}$$
.

Then $\lim_{m\to\infty} x^m = 0$.

- ▶ Take any $\varepsilon > 0$.
- ▶ By the Archimedean Property, we can take a natural number $M>\frac{1}{\varepsilon}.$
- ▶ Then for all $m \ge M$, we have

$$|x^m - 0| = \frac{1}{m} \le \frac{1}{M} < \varepsilon.$$

Proposition 1.4 (Convergence of Monotone Sequences)

Every monotone increasing (decreasing, resp.) sequence $\{x^m\}$ in $\mathbb R$ that is bounded above (below, resp.) is convergent, where the limit equals $\sup\{x^m\}$ ($\inf\{x^m\}$, resp.).

Proof

- For a monotone increasing and bounded sequence $\{x^m\}$, let $A = \{x^1, x^2, x^3, \ldots\}$.
- ▶ Since A is bounded above, $\alpha = \sup A$ exists by the Axiom of Real Numbers. $\Rightarrow x^m \leq \alpha$ for all $m \in \mathbb{N}$.
- Fix any $\varepsilon > 0$.
- ▶ By the definition of $\sup A$, there exists $M \in \mathbb{N}$ such that $\alpha \varepsilon < x^M$.
- ▶ Since x^m is increasing, $\alpha \varepsilon < x^m$ for all $m \ge M$.
- ▶ Therefore, we have $|x^m \alpha| < \varepsilon$ for all $m \ge M$.

Write $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ (called a *closed interval*).

Proposition 1.5 (Nested Intervals Theorem)

Suppose that closed intervals $I^m = [a^m, b^m]$, where $a^m \leq b^m$, satisfy $I^m \supset I^{m+1}$, $m = 1, 2, \ldots$. Then, $\bigcap_{m=1}^{\infty} I^m \neq \emptyset$. If $b^m - a^m \to 0$ as $m \to \infty$, then for some $\alpha \in \mathbb{R}$, $\lim_{m \to \infty} a^m = \lim_{m \to \infty} b^m = \alpha$ and $\bigcap_{m=1}^{\infty} I^m = \{\alpha\}$.

Proof

By Convergence of Bounded Monotone Sequences.

Proposition 1.6 (Bolzano-Weierstrass Theorem)

Every bounded sequence in \mathbb{R} has a convergent subsequence.

▶ For a sequence $\{x^m\}_{m=1}^\infty$ and a strictly increasing function m(k) from $\mathbb N$ to $\mathbb N$, the sequence $\{x^{m(1)}, x^{m(2)}, \ldots\}$ (denoted $\{x^{m(k)}\}_{k=1}^\infty$) is called a *subsequence* of $\{x^m\}_{m=1}^\infty$.

Proof (1/2)

- Let $\{x^m\}$ be a bounded sequence, and let $I^1=[a^1,b^1]$ be such that $x^m\in I^1$ for all $m\in\mathbb{N}.$
- ▶ Either $\{m \in \mathbb{N} \mid x^m \in [a^1, (a^1 + b^1)/2]\}$ or $\{m \in \mathbb{N} \mid x^m \in [(a^1 + b^1)/2, b^1]\}$ (or both) contains infinitely many elements of $\{x^m\}$.

Let $I^2=[a^2,b^2]$ be such an interval (let $I^2=[a^1,(a^1+b^1)/2]$ if both contain infinitely many elements).

- ▶ Repeat this procedure, and we have a sequence of closed intervals $I^1\supset I^2\supset I^3\supset\cdots$, which satisfies $b^m-a^m=2^{-(m-1)}(b^1-a^1)\to 0$ as $m\to\infty$ by the Archimedean Property.
- ▶ By the Nested Intervals Theorem, $\lim_{m\to\infty} a^m = \lim_{m\to\infty} b^m = \alpha$ for some $\alpha \in \mathbb{R}$.

Proof (2/2)

- ▶ Define a subsequence $\{x^{m(k)}\}$ as follows:
 - ▶ Let m(1) = 1.
 - Pick any x^m from I^2 with m > m(1), and let m(2) = m.
 - **...**
 - $lackbox{ Pick any }x^m \text{ from }I^k \text{ with }m>m(k-1)\text{, and let }m(k)=m.$
 - **...**

Then, since $a^k \leq x^{m(k)} \leq b^k$ for all k and $\lim_{k \to \infty} a^k = \lim_{k \to \infty} b^k = \alpha$, we have $x^{m(k)} \to \alpha$ as $k \to \infty$.

▶ A sequence $\{x^m\}_{m=1}^{\infty}$ is a *Cauchy sequence* if for any $\varepsilon > 0$, there exists a natural number M such that

$$|x^m - x^n| < \varepsilon$$
 for all $m, n \ge M$.

- ► A Cauchy sequence is bounded.
- ► A convergent sequence is a Cauchy sequence.

Proposition 1.7 (Completeness of \mathbb{R})

Every Cauchy sequence in \mathbb{R} is convergent.

Proof

By the Bolzano-Weierstrass Theorem.

Proposition 1.8 (Decimal Representation of Real Numbers)

Fix any $N \in \mathbb{N}$ with $N \geq 2$.

For any $x \in \mathbb{R}$, there exists a sequence $\{k_m\}$ with $k_m = 0, 1, \dots, N-1$ such that the sequence

$$a_m = [x] + \frac{k_1}{N} + \frac{k_2}{N^2} + \dots + \frac{k_m}{N^m}$$
 (*)

converges to x as $m \to \infty$.

Conversely, a sequence $\{a_m\}$ of the form (*) converges to some real number.

▶ If $A \subset \mathbb{R}$ is a *closed set*, then it has the following property:

for any convergent sequence $\{x^m\}$ in A, we have $\lim_{m\to\infty}x^m\in A$.

(Closed sets will be formally defined next class.)

Proposition 1.9 (Connectedness of \mathbb{R})

Let $A, B \subset \mathbb{R}$ be nonempty closed sets. If $\mathbb{R} = A \cup B$, then $A \cap B \neq \emptyset$.

Proof (1/2)

- Pick any a ∈ A and b ∈ B.
 Assume without loss of generality that a < b.</p>
- ▶ Let $A^- = \{x \in A \mid x \le b\}$.
- ▶ $A^- \neq \emptyset$ since $a \in A^-$, and A^- is bounded above by b.

 Therefore, $a^* = \sup A^-$ exists by the Axiom of Real Numbers, where $a^* < b$.
- ▶ By the definition of $\sup A^-$, for any $m \in \mathbb{N}$ there is some $a^m \in A^-$ ($\subset A$) such that $a^* \frac{1}{m} < a^m \le a^*$. By construction, a^m converges to a^* as $m \to \infty$.
- ▶ Therefore, $a^* \in A$ since A is closed.
- ▶ If $a^* = b$, then we have $a^* = b \in B$.

Proof (2/2)

- ▶ Suppose that $a^* < b$.
- ▶ For each $m \in \mathbb{N}$, let $b^m = a^* + \frac{b-a^*}{m}$, where $a^* < b^m \le b$.
- ▶ By the definition of $\sup A^-$, $b^m \notin A$. Therefore, $b^m \in B$ since $\mathbb{R} = A \cup B$.
- ▶ By construction, b^m converges to a^* as $m \to \infty$.
- ▶ Therefore, $a^* \in B$ since B is closed.

Remark

Any nonempty interval I in \mathbb{R} has the same property:

Let $A, B \subset I$ be nonempty closed sets (relative to I). If $I = A \cup B$, then $A \cap B \neq \emptyset$.

Cardinality of ${\mathbb R}$

For a function (or mapping) $f: X \to Y$,

- ▶ f is one-to-one (or an injection) if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.
- ▶ f is onto (or a surjection) if for any $y \in Y$, there exists $x \in X$ such that y = f(x).
- f is a bijection if it is one-to-one and onto.
- ▶ If $f: X \to Y$ and $g: Y \to Z$ are one-to-one (onto, resp.), then $g \circ f: X \to Z$ is one-to-one (onto, resp.).

Proposition 1.10

- 1. There is an onto mapping from \mathbb{N} to \mathbb{Z} .
- 2. There is an onto mapping from \mathbb{Z} to \mathbb{Q} .
- 3. There is an onto mapping from (0,1) to \mathbb{R} .
- 4. There is no onto mapping from \mathbb{N} to (0,1).
- 1, 2, 4 \Rightarrow There is no onto mapping from \mathbb{Q} to \mathbb{R} .
- : If $f: \mathbb{Q} \to \mathbb{R}$ was onto, then $g = f \circ f_2 \circ f_1 : \mathbb{N} \to \mathbb{R}$ would be onto, where $f_1: \mathbb{N} \to \mathbb{Z}$ and $f_2: \mathbb{Z} \to \mathbb{Q}$ are onto mappings.

Proof

1. There is an onto mapping from $\mathbb N$ to $\mathbb Z$:

$$0, 1, -1, 2, -2, 3, -3, 4, -4, \dots$$

2. There is an onto mapping from \mathbb{Z} to \mathbb{Q} :

$$\begin{array}{l} \text{for } \mathbb{Z}_{+}: \ 0, \frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2}, \frac{3}{1}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{4}{1}, \dots, \\ \\ \text{for } \mathbb{Z}_{--}: \ -\frac{1}{1}, -\frac{1}{2}, -\frac{2}{1}, -\frac{1}{3}, -\frac{2}{2}, -\frac{3}{1}, -\frac{1}{4}, -\frac{2}{3}, -\frac{3}{2}, -\frac{4}{1}, \dots. \end{array}$$

3. There is an onto mapping from (0,1) to \mathbb{R} :

$$f(x) = \tan\left(-\frac{\pi}{2} + \pi x\right).$$

Proof—Cantor's Diagonal Argument

4. There is no onto mapping from \mathbb{N} to (0,1):

Assume that there were an onto mapping f:

$$1 \mapsto 0.a_{11}a_{12}a_{13} \cdots \\ 2 \mapsto 0.a_{21}a_{22}a_{23} \cdots \\ \vdots \\ n \mapsto 0.a_{n1}a_{n2}a_{n3} \cdots a_{nn} \cdots \\ \vdots$$

Let $x = 0.x_1x_2x_3\cdots x_n\cdots$ be defined by

$$x_n = \begin{cases} 1 & \text{if } a_{nn} \text{ is even,} \\ 2 & \text{if } a_{nn} \text{ is odd.} \end{cases}$$

Then there is no $m \in \mathbb{N}$ such that f(m) = x, a contradiction.

Application: Lexicographic Preference Relation

- Let \succsim be the lexicographic preference relation on \mathbb{R}^2 , i.e., $(x,y) \succ (x',y')$ if and only if
 - $\rightarrow x > x'$ or
 - ightharpoonup x = x' and y > y'.

Proposition 1.11

There exists no utility function that represents the lexicographic preference relation \succeq .

Proof

Assume that \succeq is represented by a utility function $u \colon \mathbb{R}^2 \to \mathbb{R}$.

▶ For each $x \in \mathbb{R}$, let

$$I_x = (\inf u(x, \mathbb{R}), \sup u(x, \mathbb{R})) \quad (\neq \emptyset),$$

where $u(x,\mathbb{R})=\{z\in\mathbb{R}\mid z=u(x,y) \text{ for some } y\in\mathbb{R}\}\neq\emptyset.$

- Note that $I_x \cap I_{x'} = \emptyset$ whenever $x \neq x'$.
- ▶ Define the function $f: \mathbb{Q} \to \mathbb{R}$ by

$$f(q) = \begin{cases} x & \text{if } q \in I_x, \\ 0 & \text{if there is no } x \in \mathbb{R} \text{ such that } q \in I_x. \end{cases}$$

- ▶ This f is onto, because for any $x \in \mathbb{R}$, there exists a $q \in \mathbb{Q}$ such that $q \in I_x$ by Proposition 1.3 (the denseness of \mathbb{Q} in \mathbb{R}).
- ▶ But this contradicts Proposition 1.10.