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Notations

▶ N = {1, 2, 3, . . .}: the set of natural numbers (often 0 included)

▶ Z: the set of integers

▶ Q: the set of rational numbers

▶ R: the set of real numbers
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Properties of R

(We do not discuss how to construct real numbers.)

1. Binary operations, addition + and multiplication ·, are defined
(commutative, associative, distributive).

2. Complete ordering ≤ is defined
(complete, transitive, antisymmetric).

3. Every nonempty subset of R that has an upper bound (or is
bounded above) has a least upper bound (or supremum).

· · · “Axiom of Real Numbers”
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▶ Property 3 is the property that differentiates R from Q.

Q does not satisfy property 3.

Example:
A = {x ∈ Q | x2 < 2} has no least upper bound in Q.
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Maximum/Minimum

Let A be a subset of R.

▶ x ∈ R is the greatest element of A or the maximum of A,
denoted maxA, if

▶ x ∈ A, and

▶ a ≤ x for all a ∈ A.

▶ x ∈ R is the least element of A or the minimum of A,
denoted minA, if

▶ x ∈ A, and

▶ x ≤ a for all a ∈ A.

4 / 28



Upper/Lower Bounds, Supremum/Infimum

Let A be a nonempty subset of R.

▶ x ∈ R is an upper bound of A if a ≤ x for all a ∈ A.

▶ x ∈ R is the supremum of A, denoted supA,
if it is the least upper bound of A, i.e.,

▶ x is an upper bound of A, and

▶ if y is an upper bound of A, then x ≤ y.

Likewise,

▶ x ∈ R is a lower bound of A if x ≤ a for all a ∈ A.

▶ x ∈ R is the infimum of A, denoted inf A,
if it is the greatest lower bound of A.
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Recap

Let A be a nonempty subset of R.

▶ supA = least upper bound of A

▶ inf A = greatest lower bound of A

▶ Property 3 says that supA exists if A is bounded above.

▶ Property 3 implies that inf A exists if A is bounded below.

Example

Let A = (0, 1] = {a ∈ R | 0 < a ≤ 1}.

▶ maxA = supA = 1.

▶ minA does not exist, while inf A = 0.
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Characterization of sup and inf

Proposition 1.1

1. x = supA if and only if

(i) a ≤ x for all a ∈ A, and

(ii) for all ε > 0, there exists a ∈ A such that x− ε < a.

2. x = inf A if and only if

(i) x ≤ a for all a ∈ A, and

(ii) for all ε > 0, there exists a ∈ A such that a < x+ ε.
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Derived Properties of R

Proposition 1.2 (Archimedean Property)

N is unbounded above (i.e., N has no upper bound) in R.

Proof

▶ Assume that N is bounded above.

▶ Then α = supN exists by the Axiom of Real Numbers.

▶ By the definition of sup, there is some n ∈ N such that
α− 1 < n.

▶ Then α < n+ 1, where n+ 1 ∈ N.
▶ This contradicts the assumption that α = supN.
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Derived Properties of R
Proposition 1.3 (Denseness of Q in R)
For any a, b ∈ R with a < b, there exists r ∈ Q such that
a < r < b.

Proof

▶ We only consider the case where 0 ≤ a < b.

▶ By the Archimedean Property, there is some n ∈ N such that
n > 1

b−a .

▶ Let m ∈ N be such that m− 1 ≤ na < m.
⇒ a < m

n .

▶ Then

nb = na+ n(b− a) > (m− 1) + 1 = m.

⇒ m
n < b.

▶ So let r = m
n .
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Convergence in R
▶ A sequence in R is a function from N to R.

A sequence is denoted by {xm}∞m=1, or simply {xm}, or xm.

▶ A sequence {xm}∞m=1 converges to α ∈ R if for any ε > 0,
there exists a natural number M such that

|xm − α| < ε for all m ≥ M.

In this case, we write

lim
m→∞

xm = α or xm → α (as m → ∞).

▶ α is called the limit of {xm}∞m=1.

(If xm → α and xm → β, then α = β.)

▶ A sequence that converges to some α ∈ R is said to be convergent.
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Example

Let xm =
1

m
.

Then limm→∞ xm = 0.

▶ Take any ε > 0.

▶ By the Archimedean Property, we can take a natural number
M > 1

ε .

▶ Then for all m ≥ M , we have

|xm − 0| = 1

m
≤ 1

M
< ε.
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Derived Properties of R
Proposition 1.4 (Convergence of Monotone Sequences)

Every monotone increasing (decreasing, resp.) sequence {xm} in R
that is bounded above (below, resp.) is convergent, where the limit
equals sup{xm} (inf{xm}, resp.).

Proof

▶ For a monotone increasing and bounded sequence {xm}, let
A = {x1, x2, x3, . . .}.

▶ Since A is bounded above,
α = supA exists by the Axiom of Real Numbers.
⇒ xm ≤ α for all m ∈ N.

▶ Fix any ε > 0.
▶ By the definition of supA, there exists M ∈ N such that

α− ε < xM .
▶ Since xm is increasing, α− ε < xm for all m ≥ M .
▶ Therefore, we have |xm − α| < ε for all m ≥ M .
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Derived Properties of R

Write [a, b] = {x ∈ R | a ≤ x ≤ b} (called a closed interval).

Proposition 1.5 (Nested Intervals Theorem)

Suppose that closed intervals Im = [am, bm], where am ≤ bm,
satisfy Im ⊃ Im+1, m = 1, 2, . . .. Then,

∩∞
m=1 I

m 6= ∅.
If bm − am → 0 as m → ∞, then for some α ∈ R,
limm→∞ am = limm→∞ bm = α and

∩∞
m=1 I

m = {α}.

Proof
By Convergence of Bounded Monotone Sequences.
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Derived Properties of R

Proposition 1.6 (Bolzano-Weierstrass Theorem)

Every bounded sequence in R has a convergent subsequence.

▶ For a sequence {xm}∞m=1

and a strictly increasing function m(k) from N to N,
the sequence {xm(1), xm(2), . . .} (denoted {xm(k)}∞k=1) is called
a subsequence of {xm}∞m=1.
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Proof (1/2)

▶ Let {xm} be a bounded sequence, and let I1 = [a1, b1] be
such that xm ∈ I1 for all m ∈ N.

▶ Either {m ∈ N | xm ∈ [a1, (a1 + b1)/2]} or
{m ∈ N | xm ∈ [(a1 + b1)/2, b1]} (or both) contains infinitely
many elements of {xm}.

Let I2 = [a2, b2] be such an interval
(let I2 = [a1, (a1 + b1)/2] if both contain infinitely many elements).

▶ Repeat this procedure, and we have a sequence of closed
intervals I1 ⊃ I2 ⊃ I3 ⊃ · · · , which satisfies
bm − am = 2−(m−1)(b1 − a1) → 0 as m → ∞
by the Archimedean Property.

▶ By the Nested Intervals Theorem,
limm→∞ am = limm→∞ bm = α for some α ∈ R.
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Proof (2/2)

▶ Define a subsequence {xm(k)} as follows:

▶ Let m(1) = 1.

▶ Pick any xm from I2 with m > m(1), and let m(2) = m.

▶ · · ·
▶ Pick any xm from Ik with m > m(k − 1), and let m(k) = m.

▶ · · ·

Then, since ak ≤ xm(k) ≤ bk for all k and
limk→∞ ak = limk→∞ bk = α, we have xm(k) → α as k → ∞.
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Derived Properties of R

▶ A sequence {xm}∞m=1 is a Cauchy sequence if for any ε > 0,
there exists a natural number M such that

|xm − xn| < ε for all m,n ≥ M.

▶ A Cauchy sequence is bounded.

▶ A convergent sequence is a Cauchy sequence.

Proposition 1.7 (Completeness of R)
Every Cauchy sequence in R is convergent.

Proof
By the Bolzano-Weierstrass Theorem.
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Derived Properties of R

Proposition 1.8 (Decimal Representation of Real Numbers)

Fix any N ∈ N with N ≥ 2.
For any x ∈ R, there exists a sequence {km} with
km = 0, 1, . . . , N − 1 such that the sequence

am = [x] +
k1
N

+
k2
N2

+ · · ·+ km
Nm

(∗)

converges to x as m → ∞.
Conversely, a sequence {am} of the form (∗) converges to some
real number.
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Derived Properties of R

▶ If A ⊂ R is a closed set, then it has the following property:

for any convergent sequence {xm} in A,
we have limm→∞ xm ∈ A.

(Closed sets will be formally defined next class.)

Proposition 1.9 (Connectedness of R)
Let A,B ⊂ R be nonempty closed sets.
If R = A ∪B, then A ∩B 6= ∅.
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Proof (1/2)

▶ Pick any a ∈ A and b ∈ B.

Assume without loss of generality that a < b.

▶ Let A− = {x ∈ A | x ≤ b}.

▶ A− 6= ∅ since a ∈ A−, and A− is bounded above by b.

Therefore, a∗ = supA− exists by the Axiom of Real Numbers,
where a∗ ≤ b.

▶ By the definition of supA−, for any m ∈ N there is some
am ∈ A− (⊂ A) such that a∗ − 1

m < am ≤ a∗.

By construction, am converges to a∗ as m → ∞.

▶ Therefore, a∗ ∈ A since A is closed.

▶ If a∗ = b, then we have a∗ = b ∈ B.
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Proof (2/2)

▶ Suppose that a∗ < b.

▶ For each m ∈ N, let bm = a∗ + b−a∗

m , where a∗ < bm ≤ b.

▶ By the definition of supA−, bm /∈ A.

Therefore, bm ∈ B since R = A ∪B.

▶ By construction, bm converges to a∗ as m → ∞.

▶ Therefore, a∗ ∈ B since B is closed.
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Remark

Any nonempty interval I in R has the same property:

Let A,B ⊂ I be nonempty closed sets (relative to I).
If I = A ∪B, then A ∩B 6= ∅.
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Cardinality of R

For a function (or mapping) f : X → Y ,

▶ f is one-to-one (or an injection) if
f(x1) 6= f(x2) whenever x1 6= x2.

▶ f is onto (or a surjection) if
for any y ∈ Y , there exists x ∈ X such that y = f(x).

▶ f is a bijection if it is one-to-one and onto.

▶ If f : X → Y and g : Y → Z are one-to-one (onto, resp.),
then g ◦ f : X → Z is one-to-one (onto, resp.).
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Proposition 1.10

1. There is an onto mapping from N to Z.

2. There is an onto mapping from Z to Q.

3. There is an onto mapping from (0, 1) to R.

4. There is no onto mapping from N to (0, 1).

1, 2, 4 ⇒ There is no onto mapping from Q to R.
∵ If f : Q → R was onto, then g = f ◦ f2 ◦ f1 : N → R would be onto,
where f1 : N → Z and f2 : Z → Q are onto mappings.

24 / 28



Proof

1. There is an onto mapping from N to Z:

0, 1,−1, 2,−2, 3,−3, 4,−4, . . . .

2. There is an onto mapping from Z to Q:

for Z+ : 0,
1

1
,
1

2
,
2

1
,
1

3
,
2

2
,
3

1
,
1

4
,
2

3
,
3

2
,
4

1
, . . . ,

for Z−− : −1

1
,−1

2
,−2

1
,−1

3
,−2

2
,−3

1
,−1

4
,−2

3
,−3

2
,−4

1
, . . . .

3. There is an onto mapping from (0, 1) to R:

f(x) = tan
(
−π

2
+ πx

)
.
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Proof—Cantor’s Diagonal Argument

4. There is no onto mapping from N to (0, 1):

Assume that there were an onto mapping f :

1 7→ 0.a11a12a13 · · ·
2 7→ 0.a21a22a23 · · ·
...

n 7→ 0.an1an2an3 · · · ann · · ·
...

Let x = 0.x1x2x3 · · ·xn · · · be defined by

xn =

{
1 if ann is even,

2 if ann is odd.

Then there is no m ∈ N such that f(m) = x, a contradiction.
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Application: Lexicographic Preference Relation

▶ Let ≿ be the lexicographic preference relation on R2, i.e.,

(x, y) � (x′, y′) if and only if

▶ x > x′ or
▶ x = x′ and y > y′.

Proposition 1.11

There exists no utility function that represents the lexicographic
preference relation ≿.
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Proof
Assume that ≿ is represented by a utility function u : R2 → R.

▶ For each x ∈ R, let

Ix = (inf u(x,R), supu(x,R)) ( 6= ∅),

where u(x,R) = {z ∈ R | z = u(x, y) for some y ∈ R} 6= ∅.

▶ Note that Ix ∩ Ix′ = ∅ whenever x 6= x′.

▶ Define the function f : Q → R by

f(q) =

{
x if q ∈ Ix,

0 if there is no x ∈ R such that q ∈ Ix.

▶ This f is onto, because for any x ∈ R, there exists a q ∈ Q
such that q ∈ Ix by Proposition 1.3 (the denseness of Q in R).

▶ But this contradicts Proposition 1.10.
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