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Notations

> N ={1,2,3,...}: the set of natural numbers (often 0 included)
> 7: the set of integers
> Q: the set of rational numbers

» RR: the set of real numbers
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Properties of R

(We do not discuss how to construct real numbers.)

1. Binary operations, addition + and multiplication -, are defined
(commutative, associative, distributive).

2. Complete ordering < is defined
(complete, transitive, antisymmetric).

3. Every nonempty subset of R that has an upper bound (or is
bounded above) has a least upper bound (or supremum).

- “Axiom of Real Numbers”
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» Property 3 is the property that differentiates R from Q.
Q does not satisfy property 3.

Example:
A= {xr € Q] 2? <2} has no least upper bound in Q.
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Maximum /Minimum

Let A be a subset of R.

» = € R is the greatest element of A or the maximum of A,
denoted max A, if

> zc A and

> ag<zxzforallac A

» = c R is the least element of A or the minimum of A,
denoted min A4, if

» zc A and

» x <qforall a e A.
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Upper/Lower Bounds, Supremum/Infimum

Let A be a nonempty subset of R.

» 2 € R is an upper bound of A if a < x for all a € A.

» x € R is the supremum of A, denoted sup A4,
if it is the least upper bound of A4, i.e.,

» x is an upper bound of A, and
» if y is an upper bound of A, then z < y.

Likewise,
» x € Ris alower bound of A if x < a for all a € A.

» z € R is the infimum of A, denoted inf A,
if it is the greatest lower bound of A.
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Recap

Let A be a nonempty subset of R.
» sup A = least upper bound of A

» inf A = greatest lower bound of A

» Property 3 says that sup A exists if A is bounded above.

» Property 3 implies that inf A exists if A is bounded below.

Example
Let A=(0,1]]={acR|0<a<1}
» max A =supA=1.

» min A does not exist, while inf A = 0.
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Characterization of sup and inf

Proposition 1.1
1. z =sup A if and only if
(i) a<zforallac A, and
(ii) for all € > 0, there exists a € A such that x — e < a.
2. x =inf A if and only if
(i) z<aforallac A, and
(ii) for all € > 0, there exists a € A such that a < x + .
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Derived Properties of R

Proposition 1.2 (Archimedean Property)

N is unbounded above (i.e., N has no upper bound) in R.

Proof

| 2
| 2
>

Assume that N is bounded above.
Then a = sup N exists by the Axiom of Real Numbers.

By the definition of sup, there is some n € N such that
a—1<n.

Then a<n+1, wheren+1 & N.

This contradicts the assumption that @ = sup N.
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Derived Properties of R
Proposition 1.3 (Denseness of Q in R)

For any a,b € R with a < b, there exists r € Q such that
a<r<b.

Proof

>
>

We only consider the case where 0 < a < b.

By the Archimedean Property, there is some n € N such that
1

n > —a-

Let m € N be such that m — 1 < na < m.

=a <

Then

nb=na+nb—a)>m-1)+1=m.

= <b.
—m
Soletr ="
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Convergence in R

> A sequence in R is a function from N to R.

A sequence is denoted by {z™ or simply {z™}, or ™.

mli

> A sequence {x™}°_, converges to o € R if for any € > 0,
there exists a natural number M such that

2™ — | < e for all m > M.
In this case, we write

lim 2™ =« or ™ — a (asm — ).
m—0o0

P> « is called the limit of {z™}2°_,.
(f 2™ — o and 2™ — 3, then v = f3.)
P A sequence that converges to some a € R is said to be convergent.
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Example

1
Let 2™ = —.
m

Then lim,, oo 2™ = 0.

> Take any € > 0.

» By the Archimedean Property, we can take a natural number
M>1
» Then for all m > M, we have

1

1
0= < — <
2™ =0 = — < o7 <e.
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Derived Properties of R
Proposition 1.4 (Convergence of Monotone Sequences)

Every monotone increasing (decreasing, resp.) sequence {x™} in R
that is bounded above (below, resp.) is convergent, where the limit
equals sup{z™} (inf{z™}, resp.).

Proof

>

>

For a monotone increasing and bounded sequence {z"}, let
A= {z' 22 23,.. .}

Since A is bounded above,

« = sup A exists by the Axiom of Real Numbers.

= g™ < « for all m € N.

Fix any € > 0.

By the definition of sup A, there exists M € N such that
a—ec<aM

Since z is increasing, a — e < ™ for all m > M.
Therefore, we have |2 — a| < ¢ for all m > M.
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Derived Properties of R

Write [a,b] = {x € R | a < x < b} (called a closed interval).

Proposition 1.5 (Nested Intervals Theorem)

Suppose that closed intervals I"™ = [a™,b™], where a™ < b™,
satisfy I™ D I™FL, m =1,2,.... Then, (oo_, I™ # 0.
Ifb™ — a™ — 0 as m — oo, then for some o € R,

im0 @™ = limyy 500 0™ = a and (oo_; I™ = {a}.

Proof
By Convergence of Bounded Monotone Sequences.
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Derived Properties of R

Proposition 1.6 (Bolzano-Weierstrass Theorem)

Every bounded sequence in R has a convergent subsequence.

> For a sequence {z™}%°_;
and a strictly increasing function m(k) from N to N,
the sequence {z™(1) 2™(2) .} (denoted {z™(¥)}° ) is called

a subsequence of {x™}5°_;.

14 /28



Proof (1/2)

> Let {x™} be a bounded sequence, and let I' = [a',b'] be
such that ™ € I'! for all m € N.

» Either {m € N | 2™ € [a!, (a' +b')/2]} or
{m e N|az™ € [(a' +b')/2,b']} (or both) contains infinitely
many elements of {z""}.

Let I? = [a b?] be such an interval
(let I? = [a!, (a' + b')/2] if both contain infinitely many elements).

» Repeat this procedure, and we have a sequence of closed
intervals I1 D 12 5 I3 > - .-, which satisfies
b —a™ =2-m=D(pl —gl) - 0as m — oo
by the Archimedean Property.

» By the Nested Intervals Theorem,
lim,, oo @™ = lim,,— 00 8™ = a for some o € R.
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Proof (2/2)

> Define a subsequence {z™*)} as follows:
> Let m(1) =1.
> Pick any 2™ from I? with m > m(1), and let m(2) = m.
|
> Pick any 2™ from I* with m > m(k — 1), and let m(k) = m.
> ...

Then, since a* < k) < b* for all k and

limy o0 a* = limy,_,oo b¥ = a, we have 2™*) — o as k — co.
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Derived Properties of R

» A sequence {z™}°°_, is a Cauchy sequence if for any € > 0,

there exists a natural number M such that

|™ — 2™| < e for all m,n > M.

» A Cauchy sequence is bounded.

» A convergent sequence is a Cauchy sequence.

Proposition 1.7 (Completeness of R)

Every Cauchy sequence in R is convergent.

Proof
By the Bolzano-Weierstrass Theorem.
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Derived Properties of R

Proposition 1.8 (Decimal Representation of Real Numbers)

Fix any N € N with N > 2.

For any x € R, there exists a sequence {k,} with
km =0,1,..., N — 1 such that the sequence

ki | ko km

vty t ot (*)

converges to x as m — 00.

Conversely, a sequence {a,,} of the form (x) converges to some
real number.
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Derived Properties of R

> If A C Ris a closed set, then it has the following property:

for any convergent sequence {z™} in A,
we have lim,,, oo 2™ € A.

(Closed sets will be formally defined next class.)

Proposition 1.9 (Connectedness of R)

Let A, B C R be nonempty closed sets.
IfR=AUB, then AN B # ().
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Proof (1/2)

>

Pick any a € A and b € B.

Assume without loss of generality that a < b.
Let A= ={x € A|x <b}.
A~ # () sincea € A~, and A~ is bounded above by b.

Therefore, a* = sup A~ exists by the Axiom of Real Numbers,
where a* < b.

By the definition of sup A~, for any m € N there is some
a™ € A” (C A) such that a* — L < a™ < a*.

By construction, a converges to a* as m — oc.
Therefore, a* € A since A is closed.

If a* = b, then we have ¢* = b € B.
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Proof (2/2)

» Suppose that a* < b.
» Foreachm e N, let b = a* + % where a¢* < b™ < b.

» By the definition of sup A™, b ¢ A.
Therefore, b™ € B since R = AU B.

» By construction, b converges to a* as m — oo.

» Therefore, a* € B since B is closed.
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Remark

Any nonempty interval I in R has the same property:

Let A, B C I be nonempty closed sets (relative to I).
If I =AU B, then AN B # (.
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Cardinality of R

For a function (or mapping) f: X =Y,

» f is one-to-one (or an injection) if

f(x1) # f(x2) whenever x1 # x5.

» fis onto (or a surjection) if
for any y € Y, there exists x € X such that y = f(x).

» fis a bijection if it is one-to-one and onto.

» If f: X Y and g: Y — Z are one-to-one (onto, resp.),
then go f: X — Z is one-to-one (onto, resp.).
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Proposition 1.10

1. There is an onto mapping from N to 7Z.
2. There is an onto mapping from Z to Q.
3. There is an onto mapping from (0,1) to R.

4. There is no onto mapping from N to (0, 1).

1, 2, 4 = There is no onto mapping from Q to R.

o If f: Q — R was onto, then g = fo foo fi: N— R would be onto,

where f1: N — Z and f5: Z — Q are onto mappings.
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Proof

1. There is an onto mapping from N to Z:

0,1,-1,2,-2,3,-3,4,—4,....

2. There is an onto mapping from Z to Q:
1121231234

forZy: 0,—, =, =, =, —, =, —, =, —, —
or Zuiy 0>1’271a3a271347372>1’ 3
1 1 2 1 2 1 2 4
fOI’ L : _77_77_77_75_77_§7_77_7;_§7_*,.
1" 21" 3 2" 1" 4" 3 2" 1

3. There is an onto mapping from (0,1) to R:

f(x) = tan (—g + 7TZL‘> .
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Proof—Cantor’s Diagonal Argument
4. There is no onto mapping from N to (0, 1):

Assume that there were an onto mapping f:

1— 0.&11@120,13 s

2 0.(121&22&23 s

n+— 0.a,10720n3 " Apn * * -

Let x = 0.x129x3- - - T, - - - be defined by

1 if ay, is even,
Ip = . .
2 if apy, is odd.

Then there is no m € N such that f(m) = z, a contradiction.
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Application: Lexicographic Preference Relation

> Let = be the lexicographic preference relation on R?, i.e.,
(z,y) = (z',y') if and only if

> x>1 or
» x=212"and y >y

Proposition 1.11

There exists no utility function that represents the lexicographic
preference relation 7.
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Proof

Assume that 2~ is represented by a utility function u: R? — R.

» For each z € R, let
I, = (infu(z,R),supu(z,R)) (#0),
where u(z,R) = {z € R | z = u(x,y) for some y € R} # (.
» Note that I, N I, = () whenever = # x’.
» Define the function f: Q — R by

Flq) = {x if g €I,

0 if there is no z € R such that g € I,.
> This f is onto, because for any x € R, there exists a ¢ € Q
such that ¢ € I, by Proposition 1.3 (the denseness of Q in R).

» But this contradicts Proposition 1.10.
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