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Farkas' Lemma

Proposition 7.16 (Farkas' Lemma)

Let A € RM*N and b € RV,
The following conditions are equivalent:

1. There exists x € RM such that ATz =b and x > 0.

2. Foranyy e RN, if Ay >0, then bTy > 0.

For proof, we will use the following:

Lemma 7.17
{ATz e RN | 2 € RY} is a closed set.
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Proof of Farkas’ Lemma
> (1) = (2): Immediate.
> (2) = (1):
Suppose that (1) does not hold.
Let K = {ATz e RY |2 e RY}. Then b ¢ K.
> K is convex, and by Lemma 7.17 is closed.

» Then by the Separating Hyperplane Theorem,
there exist 4y € R with y # 0 and ¢ € R such that

yb<c<ylzforall z € K,
and therefore, yTb < inf,cx yT 2.

» Since K is a cone, it follows that inf.cx y'2z = 0.
(— Homework)

» Thus we have yTb < 0, and yTATx > ( for all z > 0, which
implies that yTAT > 07,
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Proof of Lemma 7.17
Show that K = {ATz € RN | 2 € R¥} is closed.

» Denote the column vectors in AT by al,...,a", so that
K = Cone{a',...,a™}.

» Let {z™} be a sequence in K, and suppose that z™ — Z.
We want to show that z € K.

» By Carathéodory’s Theorem, for each m, z™ is written as
a conic combination of a linearly independent subset of

{at,...,aM}.

» Since there are finitely many such subsets, there is a linearly
independent subset {a'!,...,a't} such that infinitely many
elements of {2™} are written as its conic combinations.

> Denote B = (a* --- a't) € R¥*F, and denote the
corresponding subsequence again by {z™}.
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Denote 2™ = BA™, where \™ € RL.
We have BT2™ = BTBA™, where BTB € REXL s
non-singular:

» Let BTBz = 0.

» Then 2TBT Bz = 0, where 2T BT Bx = || Bz

» Therefore, 2T BT Bz = 0 if and only if Bx = 0.

» Since the columns of B are linearly independent,
this holds if and only if z = 0.

Therefore, we have \™ = (BTB)~1BT>™.

By the continuity of (BTBZ_lBTz in z, \™ converges to
A= (BTB)™'B"z, where A € RY.

Thus, by the continuity 9f B\ in )\, we have
zZ = lim,,—soo BA™ = B\, so that z € K.
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Variants of Farkas' Lemma

Proposition 7.18 (Farkas' Lemma: Inequality version)

Let A€ RM*N andp e RV,
The following conditions are equivalent:

1. There exists x € RM such that ATz < b and z > 0.

2. Foranyy € RN, ify >0 and Ay > 0, then by > 0.

5/35



Proof

» Condition (1) is equivalent to:

There exist x € RM and z € RN such that z > 0, z > 0, and
ATy 4+ 2 =1,

or (AT 1) @ b

> By Farkas' Lemma, this is equivalent to:
For any y € RN, if (1?) y > 0, then bTy >0,

or, if y > 0 and Ay > 0, then bTy > 0 (condition (2)).
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Linear Programming
Let A c REXN fc RN ¢cRE.

Primal problem:

(P) max flz

xERN
s.t. Az <c
x > 0.

Dual problem:

(D) min c¢tA
AERK

s.t. ATA>f
A>0.

The Lagrangians for the two problems coincide
(the nonnegativity constraints aside):

Lz, \) = fT2 = AT (Az — ¢) = TA = 2T(ATA - f).
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Weak Duality

Proposition 7.19
If v € RY and A\ € RE are feasible for (P) and (D), respectively,
then fTx < cT .

Proof

» If z € RY and A € RE are feasible for (P) and (D), then

ffz < (ATAN)Tz = AT(Az) < ATe

Therefore, if_i e RY and \ € RE are feasible and if fTE =cT),
then Z and X are solutions to (P) and (D), respectively.
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Strong Duality

Proposition 7.20

Suppose that both (P) and (D) are feasible.
Then both (P) and (D) have solutions, and

max{flz | Az <¢, >0} =min{c™X | ATA> £, A >0}
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Proof
» Suppose that (P) and (D) are feasible.

We want to show that there exist z € RY and A € RE such
that Az < ¢, ATA> f, fTz > cTX\, >0, and A >0, or

A O c
0 -AT <§)g —f], x>0, Ax>0.
—fT T 0

» By Farkas' Lemma (inequality version; Proposition 7.18), this
is equivalent to the condition that for all p € RX, g € RY,

and r € R,
A @]
(" ¢" )| O -AT|>0,p>0,¢>0r>0
—fT CT
C
= (" ¢ r)|-f]|=>0
0
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> That is,
(1) ATp=rf, Ag<re, p=0,¢=0,7>0
implies
(2) ¢'p—fTg>0.
We want to show that this holds whenever (P) and (D) are
feasible.

» For r > 0, (1) implies that ¢/r and p/r are feasible solutions
to (P) and (D), so that we have
c'p— fTq=r[cT(p/r) — f¥(q/r)] > 0 by Weak Duality.

» For r =0, let z and A be feasible solutions to (P) and (D).
From (1), we have

c'p—frg>a"ATp—A\TAg > 0.
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Strong Duality

Proposition 7.21
1. Suppose that (D) has a solution.

Then (P) has a solution, and

max{fTz | Az < ¢, >0} = min{c' A | ATA > f, A > 0}.

2. Suppose that (P) has a solution.
Then (D) has a solution, and

max{fTz | Az < ¢, >0} = min{c'A | ATA > f, A > 0}.
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Proof

Suppose that (D) has a solution.

In light of Proposition 7.20, it suffices to show that (P) has
a feasible solution.

Let \* € RE be a solution to (D).

To apply Farkas' Lemma (Proposition 7.18), let z € RX be
such that ATz >0 and z > 0.

Then A* + 2 >0, and AT(\* + 2) = ATA* + ATz > f, which
means that A* 4 z is feasible in (D).

Therefore, by the optimality of A*, we have
0<ct(\ +2)—ctA =cTz.

By Proposition 7.18, there exists z € R such that Az < ¢
and z > 0.

13/35



Variants of Farkas' Lemma

Proposition 7.22 (Gale's Theorem)

Let A€ RM*N andp e RV,
The following conditions are equivalent:

1. There exists x € RM such that ATz < b.

2. Foranyy e RN, ify >0 and Ay = 0, then bTy > 0.
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Proof

» Condition (1) is equivalent to:

There exist z! € RM and 22 € RM such that z! >0, 22 >0,
and AT (2! — 22) <b,

1
or (AT —AT) (22> <b.

» By Farkas’ Lemma (inequality version; Proposition 7.18),
this is equivalent to:

For any y € RY, if y > 0 and (_AA> y >0, then bTy >0,

or, if y > 0 and Ay = 0, then bTy > 0 (condition (2)).
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Variants of Farkas' Lemma

Proposition 7.23 (Gordan's Theorem)

Let A € RM*N,
The following conditions are equivalent:

1. There exists z € RM such that ATz > 0.

2. Foranyy € RN, ify >0 and Ay =0, then y = 0.

16 /35



Proof

» Condition (1) is equivalent to:

There exists € RM such that —AT2 < —1.

» By Gale's Theorem (Proposition 7.22), this is equivalent to:
For any y € RV, if y > 0 and (—A)y = 0, then (—1T)y >0,
ory >0 and Ay = 0, then y = 0 (condition (2)).
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Variants of Farkas' Lemma

Proposition 7.24 (Ville/von Neumann-Morgenstern )

Let A € RM*N,
The following conditions are equivalent:

1. There exists z € RM such that ATz > 0 and z > 0.

2. Foranyy € RN, ify >0 and Ay <0, then y = 0.
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Variants of Farkas' Lemma

» In fact,
“there exists © € RM such that ATz > 0 and z > 0"
is equivalent to
“there exists © € RM such that ATz > 0 and 2 > 0".

» Given an z > 0 in the latter, consider = + €1 for sufficiently
small € > 0.

Proposition 7.25 (Ville/von Neumann-Morgenstern |I)

Let A € RM*N,
The following conditions are equivalent:

1. There exists © € RM such that ATz > 0 and > 0.

2. Foranyy € RN, ify >0 and Ay <0, then y = 0.
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Proof of Proposition 7.24

» Condition (1) is equivalent to:
T

There exists € RM such that (13

>w>>0.

» By Gordan's Theorem (Proposition 7.23), this is equivalent to:
For any y € RY and z € RM,

if y>0,2>0, and (A I) (Z) = (), then <Z> =0.

» This is equivalent to:

For any y € RY,
if y >0 and Ay <0, then y = 0 (condition (2)).
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Variants of Farkas' Lemma

Proposition 7.26

Let A € RM*N,
The following conditions are equivalent:

1. There exists x € RM such that ATz <0 and x> 0.

2. Foranyy € RN, ify >0 and Ay > 0, then Ay = 0.
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Proof

Condition (1) is equivalent to:

T
There exists € RM such that (1:1[> r < (_01)

By Gale's Theorem (Proposition 7.22), this is equivalent to:
For any y € RY and z € RM,
ify>0,2>0 and (A —I) (g) — 0, then

(0 —17) <=Z> > 0.

This is equivalent to:

For any y € RV,
if y>0and Ay > 0, then Ay = 0 (condition (2)).
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Variants of Farkas' Lemma

Proposition 7.27 (Stiemke's Lemma)

Let A € RM*N,
The following conditions are equivalent:

1. There exists © € RM such that ATz =0 and x> 0.

2. Foranyy e RN, if Ay >0, then Ay = 0.
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Proof

Condition (1) is equivalent to:

T
There exists x € RM such that z > 0 and < A > z < 0.

—AT
By Proposition 7.26, this is equivalent to:
For any y € RY and z € RM,
ify>0,22>0, and (A —A) <Z> > (), then

(A —A) @) =0,

This is equivalent to:

For any y € RY, if Ay >0, then Ay = 0 (condition (2)).
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Variants of Farkas' Lemma

Proposition 7.28 (Motzkin's Theorem)
Let B € RM*N O e RM*E D ¢ RM*L,
The following conditions are equivalent:
1. There exists no x € RM such that BTz > 0, CT2 > 0, and
DTz =0.
2. There exist y; € RN, yy € RE, and y3 € RY such that
By1 +Cya+ Dys =0, y1 >0, y1 #0, and ya > 0.

» Proved using Farkas' Lemma.

» Proposition 7.23 (Gordan's Theorem), Propositions 7.24-7.25
(Ville's Theorem), Proposition 7.26, and Proposition 7.27
(Stiemke's Lemma) are all special cases of this theorem.

25/35



Efficient Production under Linear Technology

» For the production set Y C RY, y € Y is efficient if there is
noy €Y such that y >y and v/ #v.

Proposition 7.29

LetY = {y € RN | Ay < b} for some A € RM*N and b € RM.
Then y €Y s efficient if and only if there exists p > 0 such that

p-y>p-yforallyeyY.

> The “if" part holds for general set Y.
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Proof

The “if" part:

If 7 is not efficient, i.e., ¥/ — 7 > 0, # 0 for some 3/ € Y, then

for any p > 0, we have (v —4)p > 0 or ¥/p > y*p.
The “only if" part:
Suppose that § € Y is efficient.

1 1
Write A = <32> and b = (22) such that

Aty =0t A%y < b2,

where AF € RMxN pk ¢ RMr | = 1,2, and M; + My = M.

By the efficiency of 4, M7 > 1.
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» By the efficiency of 7, there exists no z € RY such that
Alng,zZO,z#O.

If there exists such z, then A(y + €z) < b for sufficiently small
>0, where y+ez 2 4.

» By Proposition 7.25 (Ville's Theorem), there exists z € RM:
such that (AY)Tz > 0 and 2 > 0.

Let p= (AYTz (> 0).
» Then for any y € Y (where Aly < b'), we have
Al
Al

bl
.t

QE @\
||

NSNS
IN

p- X
p- xT

as desired.
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Strict Dominance and Never Best Response

Consider a two-player normal form game:
» S; ={1,...,M}: set of pure strategies of player 1 (M > 2)
Sy ={1,...,N}: set of pure strategies of player 2 (N > 2)

> AS) ={zeR¥ |z +...+azy =1}
set of mixed strategies of player 1
AS2) = {y € RY |y + ... +yx = 1}
set of mixed strategies of player 2

» From player 1's point of view, A(S2) is interpreted as
the set of 1's beliefs over 2's strategies.

» Pure strategy m € S is identified with e,,, € A(S1),
the mth unit vector of RM.
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» Payoff matrix for player 1:

ur vt UIN
Up1 ot UMN

(We only consider the incentives of player 1.)
» el Uy --- payoff from m € Sy against y € A(S»)

» zTUy --- payoff from x € A(Sy) against y € A(Ss)
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> m € S is a best response to y € A(Sy) if el Uy > e}Uy for
all £ € .

» m € 5 is a never best response if it is not a best response to
any y € A(S2).

» m € S is strictly dominated if there exists x € A(S]) such
that e%Uen < 2YUe,, for all n € Ss.
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Proposition 7.30

In a two-player normal form game, m € Sy is a never best response
if and only if it is strictly dominated.

» The result extends straightforwardly to (finite) games with
more than two players if best response is defined with respect
to correlated beliefs over opponents’ strategies.
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Proof

> Let

U1 —Um1 °° UIN — UmN

h
I

UM1 —Uml " UMN — UmN

» m € .51 is a never best response )
<= there exists no y > 0, y # 0, such that Uy <0
< ify>0and Uy <0, then y = 0.

» m € 5 is strictly dominated .
<= there exists z > 0, x # 0, such that zTU >> 0.

» By Ville's Theorem (Proposition 7.25), these are equivalent.
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Weak Dominance and Never Best Response

» m € S is weakly dominated if there exists x € A(S7) such
that
> el Ue, <2TUe, forall n € S5, and

> el Ue, < 2TUe, for some n € S,.

Proposition 7.31
In a two-player normal form game, m € Sy is a best response to
some totally mixed strategy y € A(S3) if and only if it is not

weakly dominated.
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Proof

> Again let

Ulr —Um1 - UIN — UnN
U= :
UpM1 — Uml - UMN — UmN

> m € 5] is a best response to some totally mixed strategy
<= there exists y > 0 such that Uy < 0.

» m € 5] is not weakly dominated .
<= there exists no a:~2 0, x # 0, sugh that 21U ; 0
< ifx>0and zTU > 0, then 27U = 0.

» By Proposition 7.26, these are equivalent.
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