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1 Introduction

Given a nonempty set K ⊂ RL, the concave support function and the convex support

function of K are defined respectively by

µK(p) = inf
x∈K

p · x,

νK(p) = sup
x∈K

p · x.

For a given utility function u, the expenditure function, as a function of price vector

with a required utility level u fixed, is the concave support function of the “at-least-as-

good-as set” {x | u(x) ≥ u}, while for a production set Y , the profit function is the

convex support function of Y . Here we think of the expenditure function as a primary

example and thus refer to a concave support function simply as a support function (as

in MWG), whereas in convex analysis textbooks, a support function usually refers to a

convex support function.

We will allow for functions that may take values −∞ and ∞.1 A function f : RL →
[−∞,∞] is concave if {(x,w) ∈ RL × R | w ≤ f(x)}, which is called the hypograph of

f and denoted hyp f , is convex in RL × R. A function f : RL → [−∞,∞] is convex if

−f is concave. Equivalently, f : RL → [−∞,∞] is convex if the epigraph of f , epi f =

{(x,w) ∈ RL×R | w ≥ f(x)}, is convex in RL×R. Note that a concave function defined

on a subset X of RL can be extended to a concave function defined on RL by assigning

the value −∞ outside X.

In this document, we give a proof of the following theorem (MWG, Proposition

3.F.1):

1But we will mostly deal with concave functions f such that f(x) < ∞ for all x and f(x) > −∞ for
some x. Such a function is called a proper concave function, whereas we will not use this terminology,
but refer as “f : RL → [−∞,∞) with f ̸≡ −∞”.
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Theorem 1.1. Let K ⊂ RL be a nonempty closed convex set, and µK its support

function, i.e., µK(p) = infx∈K p · x. Let p̄ ∈ RL be such that µK(p̄) > −∞. Then

there is a unique x̄ ∈ K such that µK(p̄) = p̄ · x̄ if and only if µK is differentiable at p̄.

Moreover, in this case, ∇µK(p̄) = x̄.

This is Corollary 25.1.3 in Rockafellar (1970), which shows up in Chapter 25 on page

243. Its proof can thus be obtained if one goes through all those 25 chapters in this

book, but it is obviously a tough task. In these notes, we present a minimum amount

of theorems from Rockafellar that are necessary to prove the above theorem.

2 Separating Hyperplane Theorem

The starting point is the following Separating Hyperplane Theorem as presented in

Theorem M.G.2 in MWG.

Theorem 2.1. Let A ⊂ RN be a closed convex set, and let x̄ /∈ A. Then there exist

p ∈ RN with p ̸= 0 and α ∈ R such that p · x̄ < α ≤ p · x for all x ∈ A.

The following is an alternative presentation of the above theorem involving the sup-

port function of the convex set in consideration.

Theorem 2.2. Let K ⊂ RL be a nonempty closed convex set, and µK its support

function. Then,

K = {x ∈ RL | p · x ≥ µK(p) for all p ∈ RL}.

Proof. (i) K ⊂ RHS: By the definition of µK .

(ii) K ⊃ RHS: Suppose that x̄ /∈ K. Then by Theorem 2.1, there exist p̄ ∈ RL with

p̄ ̸= 0 and α ∈ R such that p̄ · x̄ < α ≤ p̄ ·x for all x ∈ K, and hence p̄ · x̄ < µK(p̄), which

means that x̄ /∈ RHS.

The following is a separation theorem for the hypograph of a concave function.

Theorem 2.3 (Theorem 12.1 p.102). Let f : RL → [−∞,∞) be a concave function, and

let (x̄, w̄) /∈ cl(hyp f). Then there exist p ∈ RL with p ̸= 0 and α ∈ R such that

p · x̄− w̄ < α ≤ p · x− w for all (x,w) ∈ cl(hyp f). (2.1)

Proof. Assume that f is not identically −∞ (otherwise the assertion holds trivially).

Let (x̄, w̄) /∈ cl(hyp f). Since the closed set cl(hyp f) is convex by Lemma A.2, it follows

from Theorem 2.1 that there exist (q, γ) ∈ RL × R and β ∈ R such that

q · x̄+ γw̄ < β ≤ q · x+ γw for all (x,w) ∈ cl(hyp f). (2.2)

There are two cases: (i) γ ̸= 0 and (ii) γ = 0.
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(i) γ ̸= 0: Since in (2.2), w can be arbitrarily small, we must have γ < 0. Thus, we

obtain (2.1) by dividing (2.2) by −γ > 0 and letting p = −q/γ and α = −β/γ.

(ii) γ = 0: From (2.2) we have

q · x̄− β < 0, and (2.3)

0 ≤ q · x− β for all x ∈ RL such that (x,w) ∈ cl(hyp f) for some w ∈ R. (2.4)

We claim that there exist p0 ∈ RL with p0 ̸= 0 and α0 ∈ R such that

w ≤ p0 · x− α0 for all (x,w) ∈ cl(hyp f), (2.5)

which can be constructed as follows: Take any (x0, w0) /∈ cl(hyp f) with f(x0) > −∞.

By Theorem 2.1, there exist (q0, γ0) ∈ RL × R and β0 ∈ R such that

q0 · x0 + γ0w0 < β0 ≤ q0 · x+ γ0w for all (x,w) ∈ cl(hyp f). (2.6)

By the first inequality in (2.6) with (x,w) = (x0, f(x0)), so we have γ0w0 < γ0f(x0),

which together with w0 > f(x0) implies that γ0 < 0. Then divide the second inequality

in (2.6) by −γ0 > 0 and let p0 = −q0/γ0 and α0 = −β0/γ0.

By (2.4) and (2.5), for any λ ≥ 0 we have w ≤ (p0 · x − α0) + λ(q · x − β) for all

(x,w) ∈ cl(hyp f), or

α0 + λβ ≤ (p0 + λq)x− w for all (x,w) ∈ cl(hyp f).

By (2.3), for sufficiently large λ we also have (p0 · x̄− α0) + λ(q · x̄− β) < w̄, or

(p0 + λq)x̄− w̄ < α0 + λβ.

Hence, with such a λ, we have the desired inequality (2.1) by setting p = p0 + λq and

α = α0 + λβ.

A concave function f : RL → [−∞,∞] is said to be closed if hyp f is closed in RL+1.

3 Properties of Support Functions

Proposition 3.1. The support function µK of a nonempty set K ⊂ RL is homogeneous

of degree one, concave, and closed.

Proof. For any α > 0, we have µK(αp) = infx∈K(αp) · x = α infx∈K p · x = αµK(p).

We have hypµK = {(p,m) | m ≤ infk∈K p · x} = {(p,m) | m ≤ p · x for all x ∈ K} =∩
x∈K{(p,m) | m ≤ p ·x}, which is convex and closed since {(p,m) | m ≤ p ·x} is convex

and closed for each x ∈ K.

In fact, these are the properties that characterize support functions: we will show

in Section 4 that any closed concave function that is homogeneous of degree one is the

support function of some closed convex set.

The following proposition gives a characterization of the minimizers of the function

p · x with respect to x ∈ K.
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Proposition 3.2 (Corollary 23.5.3, p.219). Let K ⊂ RL be a nonempty closed convex

set, and µK its support function. For x̄ ∈ RL and p̄ ∈ RL, the following conditions are

equivalent:

(a) x̄ ∈ K and p̄ · x̄ = µK(p̄);

(b) µK(p) ≤ µK(p̄) + (p− p̄) · x̄ for all p ∈ RL.

Proof. The condition (b) is equivalent to

p̄ · x̄− µK(p̄) ≤ p · x̄− µK(p) for all p ∈ RL,

which in turn is equivalent to

p̄ · x̄− µK(p̄) ≤ inf
p∈RL

p · x̄− µK(p). (3.1)

(i) (a) ⇒ (b): Suppose that x̄ ∈ K and p̄·x̄ = µK(p̄). Then we first have p̄·x̄−µK(p̄) =

0. By the definition of µK , we also have p · x̄ − µK(p) ≥ 0 for all p ∈ RL. Hence the

condition (3.1) holds.

(ii) (b) ⇒ (a): We first show that the condition (3.1) implies x̄ ∈ K. Suppose that

x̄ /∈ K. Then by Theorem 2.2, there exists p̄ ∈ RL such that p̄ · x̄ < µK(p̄). Denote

p̄ · x̄ − µK(p̄) = −γ, where γ > 0. Then, since µK is homogeneous of degree one

(Proposition 3.1), for any α > 0 we have (αp̄) · x̄− µK(αp̄) = α(p̄ · x̄− µK(p̄)) = −αγ,

which implies that infp∈RL p · x̄− µK(p) = −∞ in the right hand side of (3.1), while the

left hand side is finite. Hence, (3.1) does not hold.

Given x̄ ∈ K, we have p̄ · x̄ ≥ µK(p̄) by the definition of µK , while, since infp∈RL p ·
x̄− µK(p) ≤ 0 (let p = 0, then 0 · x̄− µK(0) = 0), we have p̄ · x̄ ≤ µK(p̄) by (3.1). Thus

we have p̄ · x̄ = µK(p̄).

The function µ∗
K defined by

µ∗
K(x) = inf

p∈RL
p · x− µK(p),

which shows up in the right hand side of (3.1), is called the conjugate of µK . The support

function µK is actually the conjugate of the indicator function of K, the function ρK

defined by

ρK(x) =

0 if x ∈ K,

−∞ if x /∈ K,

since µK can be written as

µK(p) = inf
x∈RL

p · x− ρK(x).

Part (ii) in the proof of Proposition 3.2 in fact shows that, if K is a closed convex

set, it holds that µ∗
K = ρK (where the Separating Hyperplane Theorem 2.1 and the

homogeneity of µK are used to show that µ∗
K ≤ ρK). In the next section, we prove

a more general result, Theorem 4.3, for conjugates of general concave functions, which

contains this fact as a special case.
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Remark 3.1. Proposition 3.2 is in fact the “subdifferential version” of Shephard’s Lemma

(MWG, Proposition 3.G.1; also known as McKenzie’s Lemma). When condition (b)

holds, x̄ is called a subgradient of µK at p̄. The set of all subgradients of µK at p̄ is

called the subdifferential of µK at p̄ and is denoted by ∂µK(p̄). Proposition 3.2 says that

if K is a nonempty closed convex set, then

argmin
x∈K

p̄ · x = ∂µK(p̄). (3.2)

In the context of expenditure minimization, where K = {x ∈ RL
+ | u(x) ≥ u}, the left

hand side of (3.2) defines the Hicksian demand correspondence, while the right hand

side is the subdifferential of the expenditure function.

4 Conjugates of Concave Functions

Definition 4.1. For a concave function f : RL → [−∞,∞) with f ̸≡ −∞, the conjugate

of f is the function f∗ : RL → [−∞,∞) defined by

f∗(p) = inf
x∈RL

p · x− f(x).

We write (f∗)∗ = f∗∗.

Recall that a concave function is said to be closed if its hypograph is closed.

Proposition 4.1. f∗ is a closed concave function.

Proof. By definition,

hyp f∗ = {(p,m) ∈ RL × R | m ≤ infx∈RL p · x− f(x)}
= {(p,m) ∈ RL × R | m ≤ p · x− f(x) for all x ∈ RL}

=
∩

x∈RL

{(p,m) ∈ RL × R | m ≤ p · x− f(x)}.

Since for each x ∈ RL, {(p,m) ∈ RL × R | m ≤ p · x − f(x)} is convex and closed in

RL × R, so is hyp f∗.

Proposition 4.2. For a concave function f , if f(x) > −∞ for some x, then f∗(p) < ∞
for all p, while if f(x) < ∞ for all x, then f∗(p) > −∞ for some p.

Proof. The latter implication follows from Theorem 2.3.

The following Conjugate Duality Theorem is one of the fundamental results in convex

analysis. It follows from Theorem 2.3.

Theorem 4.3 (Theorem 12.2, p.104). Let f : RL → [−∞,∞) be a concave function.

Then hyp f∗∗ = cl(hyp f). If f is closed, then f∗∗ = f .
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Proof. If f ≡ −∞, then f∗∗ ≡ −∞, so that the assertions hold. Assume thus that

f ̸≡ −∞.

(i) hyp f∗∗ ⊃ cl(hyp f): Since hyp f∗∗ is a closed set by Proposition 4.1, it is sufficient

to show that hyp f∗∗ ⊃ hyp f , i.e., f∗∗ ≥ f . Fix any x ∈ RL. Since by definition,

f∗(p) ≤ p · x− f(x) for all p ∈ RL, we have

f∗∗(x) = inf
p∈RL

p · x− f∗(p)

≥ inf
p∈RL

p · x−
(
p · x− f(x)

)
= f(x).

(ii) hyp f∗∗ ⊂ cl(hyp f): Let (x̄, w̄) /∈ cl(hyp f). Then by Theorem 2.3, there exist

p̄ ∈ RL with p̄ ̸= 0 and α ∈ R such that

p̄ · x̄− w̄ < α ≤ p̄ · x− w for all (x,w) ∈ cl(hyp f).

In particular, we have

p̄ · x̄− w̄ < α ≤ p̄ · x− f(x) for all x ∈ RL such that f(x) > −∞.

Therefore, we have

p̄ · x̄− w̄ < inf{p̄ · x− f(x) | f(x) > −∞} = f∗(p̄),

and hence w̄ > p̄ · x̄− f∗(p̄) ≥ f∗∗(x̄), which means that (x̄, w̄) /∈ hyp f∗∗.

For a concave function f : RL → [−∞,∞), we define the closure of f to be the

function whose hypograph equals the closure of hyp f .2

Definition 4.2. For a concave function f : RL → [−∞,∞), the closure of f is the

function g such that hyp g = cl(hyp f), and is denoted by cl f .

By Theorem 4.3, cl f is well defined and equal to f∗∗. By definition, cl f ≥ f . f is

closed if and only if cl f = f .

The following is an application of Theorem 4.3, which shows that the closure of a

homogeneous concave function can be expressed as the support function of some convex

set.

Proposition 4.4 (Corollary 13.2.1, p.114). If e : RL → [−∞,∞) with e ̸≡ −∞ is

concave and homogeneous of degree one, then

(cl e)(p) = inf
x∈V

p · x

for all p ∈ RL, where

V = {x ∈ RL | q · x ≥ e(q) for all q ∈ RL}.

2The definition here is different from, but equivalent to that in Rockafellar.
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Proof. By Theorem 4.3,

(cl e)(p) = inf
x∈RL

p · x− e∗(x), (4.1)

where e∗ is the conjugate of e, i.e.,

e∗(x) = inf
q∈RL

q · x− e(q). (4.2)

Note that e∗(x) < ∞ for all x ∈ RL, since by assumption, e(p) > −∞ for some p. Since

e is positively homogeneous of degree one, by (4.2) we have

e∗(x) = inf
q∈RL

q · x− αe(α−1q)

= α

[
inf
q∈RL

(α−1q) · x− e(α−1q)

]
= αe∗(x)

for α > 0, which together with e∗(x) < ∞ implies

e∗(x) =

0 if e∗(x) ≥ 0,

−∞ if e∗(x) < 0.

Hence, by (4.1) we have

(cl e)(p) = inf
x: e∗(x)≥0

p · x = inf
x∈V

p · x,

as claimed.

Remark 4.1. This is Proposition 3.H.1 in MWG (that one can recover the “at-least-as-

good-as sets” from the expenditure function) without differentiability. To accommodate

the difference in the domain (the positivity of price vectors), extend the given function

defined on RL
++ to RL by assigning −∞ outside RL

++, and then apply Lemma A.6. That

is, given a function e(·, u) : RL
++ → [0,∞) that is concave and homogeneous of degree

one (with utility level u fixed), define ē(·, u) : RL → [−∞,∞) by ē(p, u) = e(p, u) for

p ∈ RL
++ and ē(p, u) = −∞ for p /∈ RL

++. Clearly, ē(·, u) is still concave and homogeneous

of degree one. Hence, by Proposition 4.4, we have (cl ē)(p, u) = infx∈Vu p · x, where
Vu = {x ∈ RL | q ·x ≥ ē(q, u) for all q ∈ RL} = {x ∈ RL | q ·x ≥ e(q, u) for all q ∈ RL

++}.
By Lemma A.6, (cl ē)(p, u) = e(p, u) for all p ∈ RL

++.

5 Differentiability of Concave Functions

Let f : RL → [−∞,∞] be any function, and let x̄ ∈ RL be such that |f(x̄)| < ∞. f is

differentiable at x̄ if there exists p̄ ∈ RL such that

lim
∥z∥→0

f(x̄+ z)− f(x̄)− p̄ · z
∥z∥

= 0,
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i.e., for any ε > 0, there exists δ > 0 such that, for any z ∈ RL, z ̸= 0,

∥z∥ ≤ δ =⇒ |f(x̄+ z)− f(x̄)− p̄ · z|
∥z∥

≤ ε.

In this case, p̄ equals ∇f(x̄) = ((∂f/∂x1)(x̄), . . . , (∂f/∂xL)(x̄))
′.

Lemma 5.1 (Theorem 23.1, p.213). Let f : RL → [−∞,∞] be a concave function, and

let x̄ ∈ RL be such that |f(x̄)| < ∞. For any z ∈ Rn,

f(x̄+ λz)− f(x̄)

λ
(λ > 0)

is a nonincreasing function of λ.

Proof. Given x̄ such that |f(x̄)| < ∞, let

g(z) = f(x̄+ z)− f(x̄),

which is concave by the concavity of f . Note that g(0) = 0.

Let λ < λ′ (λ, λ′ > 0). We want to show that g(λz)/λ ≥ g(λ′z)/λ′. Assume that

g(λ′z) > −∞ (otherwise the inequality holds trivially). Take any w′ ≤ g(λ′z). Since

(0, 0), (λ′z, w′) ∈ hyp g, we have(
1− λ

λ′

)
(0, 0) +

λ

λ′ (λ
′z, w′) =

(
λz,

λ

λ′w
′
)

∈ hyp g,

and therefore,

g(λz) ≥ λ

λ′w
′.

If g(λ′z) < ∞, then letting w′ = g(λ′z), we have g(λz) ≥ (λ/λ′)g(λ′z), hence g(λz)/λ ≥
g(λ′z)/λ′. If g(λ′z) = ∞, then w′ can be arbitrarily large, so we have g(λz) = ∞.

For any function f : RL → [−∞,∞] and for x̄ ∈ RL such that |f(x̄)| < ∞, if the

limit

lim
λ↘0

f(x̄+ λz)− f(x̄)

λ

exists (in [−∞,∞]), then it is called the one-sided directional derivative of f at x̄ with

respect to z and is denoted by f ′(x̄; z). Note that f ′(x̄; 0) = 0 by definition. If f is

differentiable at x̄, then, for each z ∈ RL, we have

f ′(x̄; z) = ∇f(x̄) · z,

since, for z ̸= 0,

f(x̄+ λz)− f(x̄)

λ
−∇f(x̄) · z =

f(x̄+ λz)− f(x̄)−∇f(x̄) · z
∥λz∥

∥z∥ → 0

as λ ↘ 0. Lemma 5.1 implies that if f is a concave function, then, even f is not

differentiable at x̄, f ′(x̄; z) exists, equal to

sup
λ>0

f(x̄+ λz)− f(x̄)

λ
.
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Lemma 5.2 (Theorem 23.1, p.213). Let f : RL → [−∞,∞] be a concave function, and

let x̄ ∈ RL be such that |f(x̄)| < ∞. The function f ′(x̄; ·) is homogeneous of degree one

and concave.

Proof. By definition, for any α > 0,

f ′(x̄;αz) = lim
λ↘0

f(x̄+ λ(αz))− f(x̄)

λ

= α lim
λ↘0

f(x̄+ (λα)z)− f(x̄)

αλ
= αf ′(x̄; z),

which means that f ′(x̄; ·) is homogeneous of degree one.

For λ > 0, let

hλ(z) =
f(x̄+ λz)− f(x̄)

λ
.

which is concave in z by the concavity of f . Let (z, w), (z′, w′) ∈ hyp f ′(x̄; ·). By the

definition of f ′(x̄; ·), for any ε > 0 we have w − ε ≤ hλ(z) and w′ − ε ≤ hλ(z
′) for some

λ > 0. Then for any α ∈ [0, 1], we have

(1− α)w + αw′ − ε ≤ hλ((1− α)z + αz′) ≤ f ′(x̄; (1− α)z + αz′),

where the first inequality follows from the concavity of hλ, while the second inequality

follows from Lemma 5.1. Since ε > 0 is arbitrary, this implies that (1 − α)(w, z) +

α(w′, z′) ∈ hyp f ′(x̄; ·), i.e., f ′(x̄; ·) is a concave function.

The following is the main result in these notes, from which Theorem 1.1 follows.

Theorem 5.3 (Theorem 25.1). Let f : RL → [−∞,∞] be a concave function, and let

x̄ ∈ RL be such that |f(x̄)| < ∞. If f is differentiable at x̄, then ∇f(x̄) is the unique p

that satisfies

f(x) ≤ f(x̄) + p · (x− x̄) for all x ∈ RL. (5.1)

Conversely, if there exists a unique p that satisfies (5.1), then f is differentiable at x̄.

In this case, the unique p equals ∇f(x̄).

Proof. Suppose that f is differentiable at x̄. The condition (5.1) is equivalent to the

condition that

f(x̄+ λz)− f(x̄)

λ
≤ p · z for all z ∈ RL and all λ > 0

(let x = x̄ + λz). Since by Lemma 5.1, the left hand side converges from below to

∇f(x̄) · z as λ → 0, this condition is equivalent to the condition that

∇f(x̄) · z ≤ p · z for all z ∈ RL,

which holds if and only if p = ∇f(x̄).

9



Conversely, let p∗ be the unique p that satisfies (5.1). Define the concave function g

by

g(z) = f(x̄+ z)− f(x̄)− p∗ · z,

where g(0) = 0, and by (5.1), g(z) ≤ 0 for all z ∈ RL. Note that by the assumption that

p∗ is the unique p that satisfies (5.1), we have

g(z) ≤ q · z for all z ∈ RL ⇐⇒ q = 0. (5.2)

We want to show that

lim
z→0

g(z)

∥z∥
= 0,

i.e., for any ε > 0, there exists δ > 0 such that if 0 < ∥z∥ ≤ δ, then |g(z)|/∥z∥ ≤ ε. In

this case, p∗ = ∇f(x̄).

For λ > 0, define the concave function hλ by

hλ(u) =
g(λu)

λ
,

where hλ(0) = 0 and hλ(u) ≤ 0 for all u ∈ RL. Then define h by

h(u) = lim
λ↘0

hλ(u)
(
= g′(0;u)

)
,

which is equal to supλ>0 hλ(u) by Lemma 5.1. Note that h ̸≡ −∞ (in fact, h(0) = 0)

and h < ∞ (in fact, h ≤ 0). By Lemma 5.2, h is concave and homogeneous of degree

one. Hence, it follows from Proposition 4.4 that

(clh)(u) = sup
q∈V

q · u

with

V = {q ∈ RL | q · v ≥ h(v) for all v ∈ RL}.

Here, we have

q · v ≥ h(v) for all v ∈ RL

⇐⇒ q · v ≥ hλ(v) for all v ∈ RL and all λ > 0

⇐⇒ q · (λv) ≥ g(λv) for all v ∈ RL and all λ > 0

⇐⇒ q · z ≥ g(z) for all z ∈ RL

⇐⇒ q = 0,

where the equivalence in the last line follows from (5.2). Therefore, we have V = {0},
which implies that (clh)(u) = 0 for all u ∈ RL. It follows from Lemma A.8 that
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h(u) = (clh)(u) = 0 for all u ∈ RL. That is, for each u ∈ RL, we have hλ(u) ↗ 0 as

λ ↘ 0.

Let B denote the unit ball in RL, and let a1, . . . , am be any finite collection of

points in RL such that B ⊂ co{a1, . . . , am}. Note that for each λ > 0 and for each

u =
∑m

i=1 λia
i ∈ B, we have

0 ≥ hλ(u) ≥
m∑
i=1

λihλ(a
i) ≥ min

i=1,...,m
hλ(a

i)

by the concavity of hλ. Fix any ε > 0, and for each i = 1, . . . ,m, let δi > 0 be such that

hλ(a
i) ≥ −ε for all λ ∈ (0, δi]. Set δ = mini=1,...,m δi > 0. Now take any z ̸= 0 such that

∥z∥ ≤ δ. Setting λ = ∥z∥ ∈ (0, δ] and u = z/∥z∥ ∈ B, we have

0 ≥ g(z)

∥z∥
= hλ(u) ≥ min

i=1,...,m
hλ(a

i) ≥ −ε,

where the last inequality follows from the choice of δi’s. We thus have |g(z)|/∥z∥ ≤ ε.

As already noted just after Proposition 3.2, when (5.1) holds, p is called a subgradient

of f at x̄, and the set of all subgradients of f at x̄ is called the subdifferential of f at x̄ and

denoted by ∂f(x̄) (and the correspondence ∂f : x 7→ ∂f(x) is called the subdifferential

of f). In these terms, Theorem 5.3 reads: Let f : RL → [−∞,∞] be a concave function,

and let x̄ ∈ RL be such that |f(x̄)| < ∞. Then f has a unique subgradient at x̄ if and

only if it is differentiable at x̄, in which case ∂f(x̄) = {∇f(x̄)}.
We are now in a position to prove Theorem 1.1. It is an immediate consequence of

Proposition 3.2 and Theorem 5.3.

Proof of Theorem 1.1. Denote x∗(p̄) = argminx∈K p̄ · x. Proposition 3.2 says that

x∗(p̄) = ∂µK(p̄). Theorem 5.3 thus implies that x∗(p̄) is a singleton if and only if

µK is differentiable at p̄, and in this case, x∗(p̄) = {∇µK(p̄)}.

Appendix: Topological Properties of Convex Sets

Lemma A.1 (Theorem 6.1, p.45). For any convex set C ⊂ RN , if x ∈ intC and

y ∈ clC, then (1− λ)x+ λy ∈ intC for any λ ∈ [0, 1).

Proof. Let x ∈ intC and y ∈ clC. Fix any λ ∈ [0, 1). We want to show that there exists

ε̄ > 0 such that (1 − λ)x + λy + ε̄u ∈ C for all u ∈ B, where B is the unit ball in RN

around 0.

Since x ∈ intC, we can take ε0 > 0 such that x+ ε0u ∈ C for all u ∈ B. Given this

ε0 > 0, let ε̄ = ε0(1 − λ)/(1 + λ) > 0. Since y ∈ clC, we can take u0 ∈ B such that

y − ε̄u0 ∈ C.

Fix any u ∈ B. Let u′ = [λ/(1+ λ)]u0 + [1/(1+ λ)]u, where u′ ∈ B by the convexity

of B. Then, (1− λ)x+ λy + ε̄u can be expressed as

(1− λ)x+ λy + ε̄u = (1− λ)x+ λ(y − ε̄u0) + λε̄u0 + ε̄u

11



= (1− λ)

(
x+

λε̄

1− λ
u0 +

ε̄

1− λ
u

)
+ λ(y − ε̄u0)

= (1− λ)(x+ ε0u
′) + λ(y − ε̄u0)

(note that ε̄λ/(1−λ) = ε0λ/(1+λ), ε̄/(1−λ) = ε0/(1+λ) by the definition of ε̄). Since

x + ε0u
′ ∈ C by the choice of ε0, we have (1 − λ)(x + ε0u

′) + λ(y − ε̄u0) ∈ C by the

convexity of C.

Lemma A.2 (Theorem 6.2, p.45). For any convex set C ⊂ RN , clC and intC are

convex.

Proof. By definition,

x ∈ clC ⇐⇒ ∀ ε > 0 ∃ y ∈ C : ∥y − x∥ < ε

⇐⇒ ∀ ε > 0 ∃ y ∈ C ∃ z ∈ Bε : x = y + z,

where Bε = {z ∈ RN | ∥z∥ < ε}. Therefore, clC =
∩

ε>0{y + z | y ∈ C, z ∈ Bε}. Since

C and Bε are convex, so is C + Bε = {y + z | y ∈ A, z ∈ Bε}, and hence clA, the

intersection of a family of convex sets, is convex.

The convexity of intC follows from Lemma A.1.

Lemma A.3 (Theorem 6.2, p.45). For any convex set C ⊂ RN , if int(clC) ̸= ∅, then
intC ̸= ∅.

Proof. Suppose that int(clC) ̸= ∅ (which implies that C ̸= ∅). Let x0 ∈ C. We claim

that there are x1, . . . , xN ∈ C such that x1 − x0, . . . , xN − x0 are linearly independent.

Indeed, suppose otherwise that m < N is the largest number for which C contains some

points y1, . . . , ym such that y − x0, . . . , ym − x0 are linearly independent. Let M =

{x0 +
∑m

i=1 λi(y
i − x0) | λ1, . . . , λm ∈ R} (the affine space spanned by x0, y1, . . . , ym).

Then, C ⊂ M by the maximality of m, and since M is a closed set, clC ⊂ M . Since

intM = ∅, we have int(clC) = ∅, contradicting our hypothesis.

Now let

S = {x0 +
∑N

i=1 λi(x
i − x0) | λi ≥ 0,

∑N
i=1 λi ≤ 1}

(i.e., S = co{x0, x1, . . . , xN}), where S ⊂ C since C is convex. This set S has a nonempty

interior: intS = {x0 +
∑N

i=1 λi(x
i − x0) | λi > 0,

∑N
i=1 λi < 1} ̸= ∅. Therefore we have

intC ̸= ∅.

Lemma A.4 (Theorem 6.3, p.46). For any convex set C ⊂ RN , int(clC) = intC.

Proof. First, since C ⊂ clC, we have intC ⊂ int(clC).

We then show the converse inclusion. If int(clC) = ∅, the conclusion holds trivially.

Suppose that int(clC) ̸= ∅. Then, since C is convex, it follows from Lemma A.3 that
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intC ̸= ∅. Let z ∈ int(clC). We want to show that z ∈ intC. Take any x ∈ intC (̸= ∅).
Suppose that x ̸= z (otherwise z ∈ intC holds trivially). For ε > 0, let

y = z − ε(x− z),

and let ε be sufficiently small so that y ∈ int(clC) and hence y ∈ clC. Then z can be

written as z = [1− 1/(1 + ε)]x+ [1/(1 + ε)]y, where x ∈ intC and y ∈ clC. Therefore,

by Lemma A.1 it follows that z ∈ intC.

Remark A.1. From this lemma, the statement in the proof of Theorem M.G.3 in MWG

follows, that for a convex set B, if x /∈ intB, then “we can find a sequence xm → x such

that, for all m, xm is not an element of the closure of set B”, which sounds “intuitive”,

but is not obvious at all. In fact, Lemmas A.3 and A.4 do not hold if one drops the

convexity. For example, let N = 1 and C = Q ∩ [0, 1]. Then clC = [0, 1] and therefore

int(clC) = (0, 1) and bdry(clC) = {0, 1}, whereas intC = ∅ and bdryC = [0, 1].

For a function f : RL → [−∞,∞), we define

dom f = {x ∈ RL | f(x) > −∞}.

It is called the effective domain of f . Note that dom f is a convex set if f is a concave

function.

Lemma A.5 (Lemma 7.3, p.54). For any concave function f : RL → [−∞,∞),

int(hyp f) = {(x,w) ∈ RL × R | x ∈ int(dom f), w < f(x)}.

Proof. First, if (x,w) ∈ int(hyp f), then for sufficiently small ε > 0, we have (x +

εu,w + ε) ∈ hyp f for any u ∈ B, where B is the unit ball in RL, which implies that

x+ εu ∈ dom f , and hence x ∈ int(dom f), and w + ε ≤ f(x), and hence w < f(x).

Second, take any (x̄, w̄) such that x̄ ∈ int(dom f) and w̄ < f(x̄). For ε > 0, let

a0 = x̄− [ε/(n+ 1)]1 and ai = a0 + εei, i = 1, . . . , L, where 1 = (1, . . . , 1) and ei is the

ith unit vector in RL, and let ε > 0 be sufficiently small so that a0, a1, . . . , aL ∈ dom f .

Let

P = {a0 +
∑L

i=1 λi(a
i − a0) | λ1, . . . , λL ≥ 0,

∑L
i=1 λi ≤ 1}

(i.e., P = co{a0, a1, . . . , aL}). Note that x̄ = [1/(n + 1)]
∑L

i=0 a
i ∈ intP = {a0 +∑L

i=1 λi(a
i − a0) | λ1, . . . , λL > 0,

∑L
i=1 λi < 1}. Let

α = min{f(a0), f(a1), . . . , f(aL)}.

Then for any x ∈ P , which can be written as x =
∑L

i=0 λia
i with λ0, λ1, . . . , λL ≥ 0 and∑L

i=0 λi = 1, we have

f(x) ≥
L∑
i=0

λif(a
i) ≥

(
L∑
i=0

λi

)
α = α
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by the concavity of f . Hence the open set intP × (−∞, α) is contained in hyp f .

If w̄ < α, then (x̄, w̄) ∈ intP × (−∞, α) ⊂ hyp f , and hence (x̄, w̄) ∈ int(hyp f).

If w̄ ≥ α, take any w0 < α, so that (x̄, w0) ∈ int(hyp f). Then write (x̄, w̄) = (1 −
λ)(x̄, w0)+λ(x̄, f(x̄)) with λ = (w̄−w0)/(f(x̄)−w0) ∈ [0, 1). Since (x̄, w0) ∈ int(hyp f)

and (x̄, f(x̄)) ∈ hyp f , and hyp f is convex, we have (x̄, w̄) ∈ int(hyp f) by Lemma A.1.

Recall from Definition 4.2 that for a concave function f : RL → [−∞,∞), the closure

of f , cl f , is the function such that hyp(cl f) = cl(hyp f).

Lemma A.6 (Theorem 7.4, p.56). For any concave function f : RL → [−∞,∞),

(cl f)(x) = f(x) for all x ∈ int(dom f).

Proof. Let x ∈ int(dom f). By definition, f(x) ≤ (cl f)(x). To show the converse

inequality, take any w ∈ R such that w ≤ (cl f)(x). We want to show that w ≤ f(x).

Take a w′ ∈ R such that w′ < f(x). Then, (x,w′) ∈ int(hyp f) by Lemma A.5. Since

(x,w) ∈ hyp(cl f) = cl(hyp f), for any ε ∈ (0, 1] we have (1 − ε)(x,w) + ε(x,w′) =

(x, (1− ε)w + εw′) ∈ int(hyp f) by Lemma A.1, and hence,

(1− ε)w + εw′ < f(x)

again by Lemma A.5. Since this holds for any ε > 0, we have w ≤ f(x).

Remark A.2. Lemma A.6 implies in particular that any concave function f such that

|f | < ∞ is closed.

Lemma A.7 (Theorem 7.4, p.56). For any concave function f : RL → [−∞,∞),

int(dom(cl f)) = int(dom f).

Proof. We first show that dom(cl f) ⊂ cl(dom f). Since hyp f ⊂ dom f × R, we have

cl(hyp f) ⊂ cl(dom f)×R. Since cl(hyp f) = hyp(cl f) by definition, we have hyp(cl f) =

cl(dom f)× R, and therefore dom(cl f) ⊂ cl(dom f).

By this and Lemma A.4, we have int(dom(cl f)) ⊂ int(cl(dom f)) = int(dom f). The

converse inclusion holds by definition.

Corollary A.8. For any concave function f : RL → [−∞,∞), if (cl f)(x) > −∞ for all

x ∈ RL, then cl f = f .
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