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In this document, by applying the argument of Milgrom and Segal (2002, Corollary 3),

we present a proof of the differentiability of the value function for a dynamic optimization

problem under the standard concavity assumption, that the return function is concave

in both the choice variable and the state variable, as well as a version of an interiority

assumption, that the optimal solution remains in the choice set for a neighborhood of

the given parameter value. As demonstrated by Milgrom and Segal (2002, Corollary 3),

these assumptions allow an elementary proof, where we do not need the fancy theorem

by Rockafellar (1970, Theorem 25.1) referred to by Benveniste and Scheinkman (1979)

(and Stokey and Lucas (1989)), which involves a separation theorem. Our interiority

assumption (condition (b) in Theorem 2 or Corollary 3 below) is what is actually used

in the proof of Stokey and Lucas (1989, Theorem 4.11), which is slightly weaker than

that of Benveniste and Scheinkman (1979, Assumption 4).

Let X ⊂ Rℓ be a non-empty convex set, and Γ: X → X a non-empty valued corre-

spondence whose graph

A = {(x, y) ∈ X ×X | y ∈ Γ(x)}

is convex. Let F : A → R be the one-period return function. Our main assumption is

that F is a concave function.

Given x0 ∈ X, let

Π′(x0) = {{xt}∞t=1 | xt+1 ∈ Γ(xt), t = 0, 1, . . .}.

A typical element in Π′(x0) will be denoted by x = (x1, x2, . . .). We assume that for all

x0 ∈ X and x ∈ Π′(x0), limn→∞
∑n

t=0 β
tF (xt, xt+1) exists in R.

Let u : X → R be defined by

u(x0,x) =

∞∑
t=0

βtF (xt, xt+1),
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where X = {(x0,x) | x0 ∈ X, x ∈ Π′(x0)}. The value function v∗ : X → R is defined by

v∗(x0) = sup
x∈Π′(x0)

u(x0,x). (SP)

To simplify the arguments, we assume that for all x0 ∈ X, u(x0,x) > −∞ for some

x ∈ Π′(x0), so that v∗(x0) > −∞ for all x0 ∈ X.

A function f : X → R is concave if its hypograph {(x, µ) ∈ X × R | µ ≤ f(x)} is

a convex set in Rℓ+1. Observe that f is concave if and only if f((1 − λ)x + λx′) >

(1− λ)a+ λa′ for all λ ∈ (0, 1) whenever f(x) > a and f(x′) > a′.

Proposition 1. Assume that F is concave. Then v∗ is concave.

Proof. Suppose that v∗(x0) > a and v∗(x′0) > a′. Then by definition, there exist x ∈
Γ(x0) and x′ ∈ Γ(x′0) such that u(x0,x) > a and u(x′0,x

′) > a′. Let λ ∈ (0, 1). Since F

is a concave function, we have

n∑
t=0

βtF ((1− λ)xt + λx′t, (1− λ)xt+1 + λx′t+1)

≥ (1 − λ)
n∑

t=0

βtF (xt, xt+1) + λ
n∑

t=0

βtF (x′t, x
′
t+1)

for all n, and therefore,

u((1− λ)x0 + λx′0, (1− λ)x+ λx′) ≥ (1− λ)u(x0,x) + λu(x′0,x
′)

> (1− λ)a+ λa′,

which implies that v∗((1− λ)x0 + λx′0) > (1− λ)a+ λa′.

Note that, v∗ being concave, if v∗(x) < ∞ for some x ∈ intX, then v∗(x) < ∞ for all

x ∈ X, since v∗(x) > −∞ for all x ∈ X by assumption.

For i = 1, . . . , ℓ, we write Fi and v∗i for the partial derivatives of F and v∗ with respect

to the ith argument, i.e.,

Fi(x, y) =
∂F

∂xi
(x, y), v∗i (x) =

∂v∗

∂xi
(x)

(when they exist).

Theorem 2. Assume that F is concave. Suppose that

(a) x0 ∈ intX, v∗(x0) < ∞, x∗ ∈ argmaxx∈Π′(x0) u(x0,x),

(b) x∗1 ∈ Γ(x) for all x in some neighborhood D ⊂ X of x0, and

(c) Fi(x0, x
∗
1) exists.

Then v∗i (x0) exists, and v∗i (x0) = Fi(x0, x
∗
1).
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Proof. By Proposition 1, v∗ is concave, and since x0 ∈ intX and v∗(x0) < ∞ by as-

sumption, v∗(x) < ∞ for all x ∈ X. Let ε̄ > 0 be such that {(xi, x0,−i) ∈ X | xi ∈
(x0,i− ε̄, x0,i+ ε̄)} ⊂ D. Take any ε ∈ (0, ε̄]. By the concavity (and the finiteness) of v∗,

we have v∗(x0) ≥ (1/2)v∗(x0 − εei) + (1/2)v∗(x0 + εei), and therefore,

v∗(x0)− v∗(x0 − εei)

ε
≥ v∗(x0 + εei)− v∗(x0)

ε
,

where ei ∈ Rℓ is the ith unit vector. Since x∗ ∈ Π′(x0 − εei) and x∗ ∈ Π′(x0 + εei) by

the choice of ε, we have

v∗(x0)− v∗(x0 − εei) ≤ u(x0,x
∗)− u(x0 − εei,x

∗) = F (x0, x
∗
1)− F (x0 − εei, x

∗
1),

v∗(x0 + εei)− v∗(x0) ≥ u(x0 + εei,x
∗)− u(x0,x

∗) = F (x0 + εei, x
∗
1)− F (x0, x

∗
1)

by the definition of v∗. Hence, we have

F (x0, x
∗
1)− F (x0 − εei, x

∗
1)

ε
≥ v∗(x0)− v∗(x0 − εei)

ε

≥ v∗(x0 + εei)− v∗(x0)

ε
≥ F (x0 + εei, x

∗
1)− F (x0, x

∗
1)

ε
.

Now let ε → 0. By the partial differentiability of F , the left most and the right most

terms converge to Fi(x0, x
∗
1), so that the two terms in between converge as well, and

their limit equals Fi(x0, x
∗
1).

If F (·, x∗1) is continuously differentiable at x0, then v∗ is continuously differentiable at

x0, and ∇v∗(x0) = ∇xF (x0, x
∗
1).

Corollary 3. Assume that F is concave. Suppose that v is a solution to

v(x) = sup
y∈Γ(x)

F (x, y) + βv(y) (x ∈ X) (FE)

and satisfies limt→∞ βtv(xt) = 0 for all x ∈ X and x ∈ Π′(x). Suppose that

(a) x0 ∈ intX, v(x0) < ∞, y∗ ∈ argmaxy∈Γ(x0) F (x, y) + βv(y),

(b) y∗ ∈ Γ(x) for all x in some neighborhood D ⊂ X of x0, and

(c) Fi(x0, y
∗) exists.

Then vi(x0) exists, and vi(x0) = Fi(x0, y
∗).

The condition as stated in Stokey and Lucas (1989, Theorem 4.11) is in fact a sufficient

condition for condition (b) under the assumption that Γ is convex valued and lower semi-

continuous. Recall that the correspondence Γ: X → Y is lower semi-continuous if, for

all x ∈ X, for any open set V such that Γ(x) ∩ V ̸= ∅, there exists a neighborhood U of

x such that Γ(x′) ∩ V ̸= ∅ for all x′ ∈ U .

3



Proposition 4. Suppose that Γ: X → Rℓ is a convex valued, lower semi-continuous

correspondence. If x0 ∈ intX and y0 ∈ int Γ(x0), then there exists a neighborhood D of

x0 such that y0 ∈ Γ(x) for all x ∈ D.

Proof. Since y0 ∈ int Γ(x0) where Γ(x0) is a convex set, there exist z0, z1, . . . , zℓ ∈ Γ(x0)

such that y0 ∈ int conv{z0, z1, . . . , zℓ}. Let V0, V1, . . . , Vℓ be open neighborhoods of

z0, z1, . . . , zℓ, respectively, such that y0 ∈ conv{z′0, z′1, . . . , z′ℓ} for any z′0 ∈ V0, z
′
1 ∈

V1, . . . , z
′
ℓ ∈ Vℓ. Since Γ is lower semi-continuous, there exist neighborhoods U0, U1, . . . , Uℓ

of x0 such that, for each i = 0, 1, . . . , ℓ, Γ(x)∩Vi ̸= ∅ for any x ∈ Ui. Now letD = ∩ℓ
i=0Ui,

which is a neighborhood of x0. Consider any x ∈ D, and pick any z′i ∈ Γ(x)∩Vi for each

i = 0, 1, . . . , ℓ. Then by construction, y0 ∈ conv{z′0, z′1, . . . , z′ℓ}. Since Γ(x) is convex, we

thus have y0 ∈ Γ(x).

Note that for the proposition to hold, the domain X of Γ can be any topological space,

while we exploited the finite dimensionality of the codomain.

The convexity of Γ is indispensable. To see this, let ℓ = 1 and X = R, and let Γ be

defined by

Γ(x) = {y ∈ R | y ≥ |x| or y ≤ −|x|},

which is continuous, i.e., upper and lower semi-continuous (one can modify it to be

compact valued). Then, 0 ∈ int Γ(0) while 0 /∈ Γ(x) for all x ̸= 0.

Example 1. Let ℓ = 1 and X = R+. Let f : R+ → R+ be a continuously differentiable

concave function, and r : R+ × R+ → R a continuously differentiable concave function

that is non-decreasing in the second variable, and let Ω(x) = [0, f(x)] for x ∈ X.

Consider

v∗(x0) = sup
{ct}∞t=0

∞∑
t=0

βtr(xt, ct)

s.t. ct ∈ Ω(xt),

xt+1 = f(xt)− ct, x0 ∈ X : given, (1)

where we assume that the infinite sum is always well defined. One can verify that v∗ is

a concave function. For simplicity, we assume that |v∗(x0)| < ∞ for all x0 ∈ X. The

value function v∗ satisfies the Bellman equation:

v∗(x) = sup
c∈Ω(x)

r(x, c) + βv∗(f(x)− c) (x ∈ X). (2)

Let the correspondence Γ: X → X be defined by

Γ(x) = {y ∈ X | y = f(x)− c for some c ∈ Ω(x)} = [0, f(x)],

which is continuous and has a convex graph, and the function F : A → R be defined by

F (x, y) = r(x, f(x)− y),
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which is concave and continuously differentiable. With F , the Bellman equation is

written as

v∗(x) = sup
y∈Γ(x)

F (x, y) + βv∗(y) (x ∈ X). (3)

Now assume that for any x0 > 0, the supremum in (2) is attained by c∗ = c∗(x0)

with 0 < c∗ < f(x0). Then the supremum in (3) is attained by y∗ = f(x0) − c∗, where

0 < y∗ < f(x0). Clearly, (x0, y
∗) ∈ intA (by the continuity of f), so that condition (b)

in Corollary 3 holds, and hence, by Corollary 3, v∗ is differentiable at any x0 > 0, and

we have

v∗′(x0) = F1(x0, y
∗) = r1(x0, f(x0)− y∗) + r2(x0, f(x0)− y∗)f ′(x0). (4)

On the other hand, once we have the differentiability of v∗, by the standard envelope

theorem argument, such as in Hotelling’s or Shephard’s lemma or whatever, applied to

the Bellman equation (2), we have

v∗′(x0) = r1(x0, c
∗) + βv∗′(f(x0)− c∗)f ′(x0). (5)

Of course, the envelope theorem formulas (4) and (5) are equivalent, through the first-

order condition for the maximization in the right hand side of (2), that c∗ satisfy

r2(x0, c
∗)− βv∗′(f(x0)− c∗) = 0. (6)

By this condition, (5) leads to (4).
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