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Abstract. For binary-action supermodular games with a continuum of symmetric

players, we show that simple global game information structures can be used to im-

plement an optimal outcome under adversarial equilibrium selection.

1. Introduction

In Morris et al. (2020), we studied implementation by information design in binary-

action supermodular (BAS) games. An outcome is smallest equilibrium implementable if

there exists an information structure such that that outcome is induced by the smallest

equilibrium of the game with that information structure. We characterized smallest

equilibrium implementable outcomes in general finite BAS games. In particular, we

provided a canonical implementing information structure that works for all implementable

outcomes and all BAS games.

In this companion note, we provide a simple, alternative smallest equilibrium imple-

mentation of a particular “target outcome” under the additional restrictions that payoffs

are symmetric and higher states give a higher incentive to choose the high action. The

target outcome is an (approximate) solution to an information design problem—to be

described in detail below—where the information designer prefers the high action to be

chosen. The target outcome is one where all players choose the high action if and only

if the state is above some threshold state, where the threshold state is the lowest state
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with the property that, conditional on the state being higher than the threshold, the high

action is in expectation “Laplacian”, i.e., the best response to a uniform belief about the

proportion of the players choosing the high action. The target outcome is shown to be

smallest equilibrium implementable by first publicly announcing whether or not the state

lies above the threshold state, and then creating a latent state that garbles the true state

and further having the players observe a noisy signal about the latent state, as in the

standard global games.

We carry out our analysis with a continuum of symmetric players and a continuous

state space. The class of environments we consider encompasses the regime change games

studied by Inostroza and Pavan (2020) and Li et al. (2019) and other coordination games

widely studied in the literature. Among many possible constructions that implement the

target outcome, ours has the attractive feature that the implementing information struc-

ture depends only on the threshold defining the target outcome, but otherwise the same

construction works for all symmetric BAS games. Li et al. (2019) present an alternative,

arguably more complicated, implementation of the same outcome, which is tailored to

regime change games. But a finite signal version of their information structure is an

(essentially unique) optimal information structure when the designer is constrained to

only use finite information structures with up to K signals, and their unconstrained op-

timal information structure is characterized as the limit of the optimal finite information

structures as K → ∞.

We now describe in more detail (i) the setting, (ii) the target outcome, (iii) the optimal

information design problem for which the target outcome is a solution, and (iv) the

implementing information structure.

The setting is as follows. A continuum of players choose between a low action, 0,

and a high action, 1. A player’s “payoff gain” is the difference in payoffs from choosing

action 1 over action 0 as a function of the proportion of players choosing action 1 and

the state θ unknown to the players. We assume action monotonicity (the payoff gain is

nondecreasing in the proportion of players who choose 1), state monotonicity (the payoff

gain is nondecreasing in the state θ), and upper dominance region (the payoff gain is

positive for sufficiently high θ, even if all other players choose action 0).
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We now describe the target outcome. The Laplacian payoff gain at state θ is a player’s

expected payoff gain if he has a uniform belief over the proportion of other players choos-

ing action 1. Let θ∗ be the unique state such that the expected Laplacian payoff gain

conditional on θ > θ∗ is zero. Our “target outcome” is the outcome where all players

choose action 1 if and only if θ > θ∗. The contribution of this note is to show how

standard “global game information structures” implement the target outcome.

Arguments from Morris et al. (2020) establish that the target outcome is an (approx-

imate) optimal outcome of an information design problem with adversarial equilibrium

selection. Consider an information designer who benefits from more players choosing

action 1, with the benefit increasing in the state. The designer can commit to any in-

formation structure which sends signals privately or publicly to the players depending

on the state. Suppose that the designer chooses an information structure to maximize

her objective function anticipating that the worst equilibrium for her will be played in

the resulting Bayesian supermodular game. By the action monotonicity of the objective,

this will be the smallest equilibrium. Under an additional restriction on the designer’s

objective function, a discrete analogue of the target outcome is an optimal outcome in

an N -player, N -state analogue of the setting in this note, and those optimal outcomes in

the discrete games converge to the target outcome as N → ∞.1 Our conditions cover, in

particular, the case of a regime change game where the designer’s objective is to maxi-

mize the probability that the status quo is maintained (the problem studied by Li et al.

(2019)).

We now describe the implementing information structure in more detail. Recall that

the target outcome generates “success” (action 1 played by all players) if and only if

the state θ is above the critical threshold θ∗. The implementing information structure

is constructed as follows. First, we partition the state space into two regions, a “failure

region” (−∞, θ∗ + ε) and a “success region”for [θ∗ + ε,∞), and publicly announce which

region the state θ belongs to. Then, if the state θ is in the success region, we garble

θ to produce a latent state ω that is distributed uniformly over a certain interval and

only reveals which element of two sub-regions, [θ∗+ ε, θ′) and [θ′,∞), θ belongs to, where

[θ′,∞) is a “dominance region” [θ′,∞) in which action 1 is a dominant action. Finally,

1In Appendix B, we provide a formal treatment of this convergence result. In Appendix C, we
present an alternative formulation of the information design problem directly dealing with a continuum
of symmetric players and a continuous state space and show that the target outcome is an optimal
outcome of this version.
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players observe a noisy signal of the latent state ω as in global games. We can choose ε > 0

arbitrarily small and θ′ arbitrarily large, so the success region is arbitrarily close to the set

of states where there is success under the target outcome. Now if it is publicly announced

that the state is in the failure region, the smallest equilibrium will have all players choosing

action 0. But if the state is in the success region, the game is equivalent to a global game

(with state ω) with a one-sided dominance region and possibly discontinuous payoffs. By

a standard iterative dominance argument for global games, the smallest equilibrium will

have all players choosing action 1, since, by construction, the Laplacian payoff gain is

always positive within this sub-game (Morris and Shin (2003)).2 Thus the target outcome

is approximately smallest equilibrium implementable, where the approximation can be

made arbitrarily tight as ε → 0. Note that the same implementing information structure

works for any payoff function satisfying our maintained assumptions. While the details

of the implementing information structure are delicate, the main ingredients are very

simple: make a public announcement about whether the state is in the success region,

and, if the state is in the success region, introduce noisy global game signals about its

exact value.

2. Setting

We consider a setting with a continuum of players and symmetric payoffs as in Morris

and Shin (2003, Section 2.2). Each player i chooses an action ai ∈ Ai = {0, 1}. A state

θ ∈ Θ is drawn according to a distribution function P with support Θ, where Θ ⊂ R is

a closed interval (with nonempty interior intΘ). A player’s payoff gain function is given

by d : [0, 1]×Θ → R, where d(ℓ, θ) is the gain from choosing action 1 over action 0 when

proportion ℓ of players choose action 1 and the state is θ.

We impose the following assumptions:

A1. Action Monotonicity: For each θ, d(ℓ, θ) is nondecreasing in ℓ.

A2. State Monotonicity: For each ℓ, d(ℓ, θ) is nondecreasing in θ.

A3. Upper Dominance Region: There exists θ ∈ intΘ such that d(0, θ) > 0 for all

θ ≥ θ.

Under A1, A3 implies that d(ℓ, θ) > 0 for all ℓ ∈ [0, 1] and θ ≥ θ.

2In Appendix A, we provide a formal proof that accommodates payoff discontinuity, under a restriction
on the noise distribution.
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We write

Φ̄(θ) =

∫ 1

0

d(ℓ, θ)dℓ

for the Laplacian payoff gain at state θ, namely, the expected payoff gain when a player

has a Laplacian (i.e., uniform) belief over the proportion of players choosing action 1

when the state is θ. By A2, Φ̄ is nondecreasing, and by A3, Φ̄(θ) > 0 for all θ ≥ θ.

The Laplacian threshold is the critical state θ♯ ∈ Θ such that the Laplacian payoff gain

becomes nonpositive:

θ♯ = sup{θ ∈ Θ | Φ̄(θ) ≤ 0}

with convention sup ∅ = inf Θ.

In a global game (Carlsson and van Damme (1993), Morris and Shin (2003)), players

observe the true state with noise. Specifically, each player i observes a private signal

xi = θ + κζ i, κ > 0, where the noise terms ζ i are distributed independently of θ and

across players according to a density f . Morris and Shin (2003) consider the setting

described above that embeds many applications in the literature. Under additional tech-

nical assumptions, one can show that action 1 is played whenever θ > θ♯, if the noise is

sufficiently small, by any strategy that survives iterative dominance. For completeness, in

Appendix A, we state and prove this result under the assumptions that the distribution

of θ admits a continuous and strictly positive density (Assumption A10) and that the

conditional distribution of θ given the observation of xi is increasing in xi in the first-order

stochastic dominance order (Assumption A11), to accommodate possible discontinuity of

payoffs in θ in our construction below.

3. Target Outcome

In the following, we assume that the payoffs (and hence Φ̄) are integrable with respect

to P :

A4. Integrability:
∫
Θ
maxℓ∈{0,1} |d(ℓ, θ)|dP (θ) < ∞.

Note that, under A1 and A2, this condition is automatically satisfied if Θ is bounded.

To ease the exposition, we also assume that
∫
Θ
Φ̄(θ)dP (θ) < 0 and that P is continuous

(i.e., the probability measure it induces is atomless).

An outcome is a mapping ν : Θ → ∆([0, 1]), where νθ ∈ ∆([0, 1]) is a probability

distribution on [0, 1] which represents a distribution of the proportion of the players

playing action 1 at state θ. We now define the target outcome. The expected Laplacian
5
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Figure 1. Laplacian thresholds

threshold is the critical state θ∗ ∈ intΘ such that the expected Laplacian payoff gain

conditional on θ > θ∗ becomes zero, i.e., the unique θ∗ ∈ intΘ that solves∫
θ>θ∗

Φ̄(θ)dP (θ) = 0. (1)

This is well defined by the assumptions of A3,
∫
Θ
Φ̄(θ)dP (θ) < 0, and the continuity of P .

Note that θ∗ < θ♯ by construction (Figure 1). Now the definition of our target outcome

ν∗ is

ν∗
θ =

δ1 if θ > θ∗,

δ0 if θ ≤ θ∗,
(2)

where δℓ ∈ ∆([0, 1]) is the Dirac measure on ℓ ∈ [0, 1].

As an illustration, let us consider two leading examples, satisfying Assumptions A1–

A3, from the global games literature. Morris and Shin (2003) studied global games with

the linear payoff gain function

d(ℓ, θ) = ℓ+ θ − 1

with {θ ∈ Θ | θ > 1} 6= ∅ (to satisfy A3). In this case, we have Φ̄(θ) = θ − 1
2
, and thus

the Laplacian threshold is θ♯ = 1
2
. Hence,∫

θ′>θ

Φ̄(θ′)dP (θ′) = (1− P (θ))
(
E[θ′|θ′ > θ]− θ♯

)
,

and therefore, the expected Laplacian threshold θ∗ is the unique solution to

E[θ|θ > θ∗] = θ♯.

Morris and Shin (1998, 2004) studied regime change games with the payoff gain function

d(ℓ, θ) =

c if ℓ > 1− θ,

c− 1 if ℓ ≤ 1− θ
(3)

with {θ ∈ Θ | θ > 1} 6= ∅ (to satisfy A3), where action 0 corresponds to attacking the

regime (with cost c ∈ (0, 1)), while action 1 to abstaining from attacking. In this case,
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we have Φ̄(θ) = k(θ)− (1− c), where

k(θ) =


0 if θ < 0,

θ if 0 ≤ θ < 1,

1 if θ ≥ 1,

and thus the Laplacian threshold is θ♯ = 1− c. Hence,∫
θ′>θ

Φ̄(θ′)dP (θ′) = (1− P (θ))
(
E[k(θ′)|θ′ > θ]− θ♯

)
,

and therefore, the expected Laplacian threshold θ∗ is the unique solution to

E[k(θ)|θ > θ∗] = θ♯.

4. Smallest Equilibrium Implementation of the Target Outcome

We now show that the target outcome ν∗ is arbitrarily approximately smallest equilib-

rium implementable. For ε > 0, define the outcome νε by

νε(θ) =

δ1 if θ ≥ θ∗ + ε,

δ0 if θ < θ∗ + ε.

Proposition 1. Assume A1–A4. For any sufficiently small ε > 0, there exists an infor-

mation structure whose smallest equilibrium induces the outcome νε.

Proof. Let ε > 0, where
∫
θ≥θ∗+ε

Φ̄(θ)dP (θ) > 0. We assume that ε is sufficiently small

that

d(0, θ) ≤ 0 for all θ < θ∗ + ε.3 (4)

Let θ′ ∈ intΘ be sufficiently large that∫ θ′

θ∗+ε

Φ̄(θ)dP (θ) > 0 (5)

and

d(0, θ) > 0 for all θ ≥ θ′. (6)

We denote

P = P (θ∗ + ε), P = P (θ′),

where 0 < P < P < 1.

We construct a desired information structure as follows. Conditional on the realization

of θ, a signal xi is sent to each player i according to the following law:

• If θ < θ∗ + ε, then xi = −∞ for all players i.

3Since Φ̄(θ) > 0 for large θ by A3, we must have Φ̄(θ∗ + ε) < 0, and hence d(0, θ∗ + ε) < 0, for small
ε > 0.
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• If θ ≥ θ∗ + ε, then xi = ω + κζ i for each player i, where

◦ ω is drawn from the uniform distribution on [P , P ] if θ∗ + ε ≤ θ < θ′ and from the

uniform distribution on [P, 1] if θ ≥ θ′, and

◦ ζ i are distributed independently of θ and ω and across players according to a distri-

bution F on
[
−1

2
, 1
2

]
with a log-concave density, say the uniform distribution, and

κ > 0 is a scaler parameter with κ ≤ 1− P .

Thus, first, there is a public announcement whether θ < θ∗+ε (in which case all players

observe a signal −∞) or θ ≥ θ∗ + ε (in which case all players observe a signal of finite

value). Then in the latter event, unconditionally on whether θ∗ + ε ≤ θ < θ′ or θ ≥ θ′,

the “latent state” ω is uniformly distributed over Ω = [P , 1], which is observed with

idiosyncratic noise ξi by each player i. A strategy of a player is a measurable function

s : {−∞}∪ (Ω+ κ
[
−1

2
, 1
2

]
) → {0, 1}, where s(x) is the action that the player plays when

observing signal x. Denote this game by Ĝ.

Now, if θ < θ∗ + ε, the expected payoff gain when the others play action 0,

1
P

∫
θ<θ∗+ε

d(0, θ)dP (θ), is nonpositive by (4), and hence, all players play action 0 in the

smallest equilibrium of Ĝ. If θ ≥ θ∗ + ε, the game is equivalent to the global game with

uniform prior where the base payoff gain function d̂(ℓ, ω), ω ∈ Ω, is given by

d̂(ℓ, ω) =


1

P − P

∫ θ′

θ∗+ε

d(ℓ, θ)dP (θ) if ω < P,

1

1− P

∫
θ≥θ′

d(ℓ, θ)dP (θ) if ω ≥ P,

which is nondecreasing in ℓ and ω, where d̂(0, ω) > 0 for all ω ≥ P by (6). The Laplacian

payoff gain ˆ̄Φ(ω) in this game is thus given by

ˆ̄Φ(ω) =

∫ 1

0

d̂(ℓ, ω)dℓ =


1

P − P

∫ θ′

θ∗+ε

Φ̄(θ)dP (θ) if ω < P,

1

1− P

∫
θ≥θ′

Φ̄(θ)dP (θ) if ω ≥ P,

and hence ˆ̄Φ(ω) > 0 for all ω ∈ Ω. By the assumption κ ≤ 1 − P , it follows from

Proposition A.2(ii) in Appendix A that the global game has a unique equilibrium, in

which all players play action 1. Therefore, in all states θ ≥ θ∗ + ε, all players play action

1 in any (hence in the smallest) equilibrium of Ĝ. □
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5. Optimality of the Target Outcome

The target outcome ν∗ studied in this note is, under player symmetry, a continuous

analog of the optimal outcome derived in Morris et al. (2020, Theorem 2) for the finite-

player, finite-state case, under certain assumptions to be described below. In this section,

we briefly review the analysis there. In Appendix B, we formally construct a sequence of

games withN symmetric players andN states along which the optimal outcome converges

as N → ∞ to ν∗. In Appendix C, we present an alternative framework of the information

design problem maintaining continuum players and continuous states (with a heuristic

“law of large numbers” assumption) and prove by the same arguments as in Morris et al.

(2020) (modulo technical differences) that ν∗ is an optimal outcome of the continuous

version of the problem.

Within this section, we assume the following technical conditions to guarantee the

convergence as N → ∞:

A5. State Space Compactness: Θ is bounded (and hence compact).

A6. Laplacian State Continuity: Φ̄(θ) is continuous in θ.

A6 is satisfied in the two examples discussed in Section 3.

Suppose that an information designer has an objective function V : [0, 1]×Θ → R with

V (0, θ) = 0 for all θ ∈ Θ by normalization, where V (ℓ, θ) is the value that the designer

receives when proportion ℓ of players play 1 and the state is θ. We impose:

A7. Objective Action Monotonicity: For each θ, V (ℓ, θ) is nondecreasing in ℓ.

Suppose that the designer chooses an information structure to maximize V anticipating

that the worst—hence smallest by A7—equilibrium of the resulting Bayesian supermod-

ular game. Morris et al. (2020) identified sufficient conditions for an outcome to be an

optimal solution of this information design problem for general finite BAS games. A

perfect coordination outcome is one where either all players choose action 1 or all players

choose action 0: in our setting, this requires νθ({0, 1}) = 1 for all θ. Morris et al. (2020)

show that a perfect coordination outcome will always be optimal if (i) the game has a

convex potential, and (ii) the designer’s objective satisfies restricted convexity with re-

spect to the potential. In our current setting with symmetric players, (i) the game has a

potential

Φ(ℓ, θ) =

∫ ℓ

0

d(ℓ′, θ)dℓ′,

which, by A1, satisfies convexity, Φ(ℓ, θ) ≤ ℓΦ(1, θ) for all ℓ and θ, while (ii) requires:
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A8. Restricted Convexity: V (ℓ, θ) ≤ ℓV (1, θ) whenever Φ(ℓ, θ) > Φ(1, θ).

In order to guarantee the optimal outcome to be monotone in the state, we in addition

require:

A9. Objective State Monotonicity: For each ℓ, V (ℓ, θ) is nondecreasing in θ.

We also assume that V (1, θ) > V (0, θ) = 0 for all θ ∈ Θ by removing irrelevant states.

Since Φ̄(θ) = Φ(1, θ) is nondecreasing by A2, this guarantees that the “cost benefit

ratio” Φ(1,θ)
V (1,θ)

is nondecreasing in θ whenever Φ(1, θ) < 0. Intuitively, V (1, θ) represents

the benefit of having all play action 1 at state θ, and, when Φ(1, θ) < 0, −Φ(1, θ) measures

the cost of inducing players to do so. Thus, by Theorem 2 of Morris et al. (2020), it is

optimal to have action 1 played at as many higher states as possible consistent with

the smallest equilibrium implementability, which is equivalent to the expectation of the

potential being positive. Thus, we have a perfect coordination optimal outcome. In

Appendix B, this optimal outcome for the N -player N -state game is shown to converge

to the target outcome ν∗ as N → ∞ (Proposition B.1).

Assumptions A7–A9 are satisfied in the following examples. An easy case is where, for

some α ≥ 1, V (ℓ, θ) = ℓα for all θ, where V (1, θ) ≤ ℓV (1, θ) for all ℓ and θ. This designer

objective V encompasses the case where the designer wants to maximize the expected

proportion of players playing action 1 (when α = 1) and the case where she wants to

maximize the probability that all players play action 1 (when α → ∞).

A more subtle case arises for the regime change game (described in Section 3) when

the designer’s objective is to maximize the probability of regime change:

V (ℓ, θ) =

1 if ℓ > 1− θ,

0 if ℓ ≤ 1− θ,

which is nondecreasing in ℓ and θ (A7, A9). This is the designer objective maximized in

Li et al. (2019). In this game, the potential is given by

Φ(ℓ, θ) =

cℓ− (1− k(θ)) if ℓ > 1− θ,

−(1− c)ℓ if ℓ ≤ 1− θ,

where k(θ) = θ if 0 < θ ≤ 1 and k(θ) = 1 if θ > 1. This function is increasing in ℓ if

ℓ > 1− θ, and therefore we have Φ(ℓ, θ) > Φ(1, θ) only if ℓ ≤ 1− θ. But if ℓ ≤ 1− θ, we

have V (ℓ, θ) = 0 ≤ ℓV (1, θ), establishing the restricted convexity of V with respect to Φ

(A8).
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6. Discussion: Finite-Player BAS Potential Games

We could extend the argument in this note to general BAS potential games, allowing

asymmetric payoffs across players. We would analogously let θ∗ be the state such that

the expected potential of action profile 1 (where all players play action 1) conditional on

θ > θ∗ exceeds the expected potential of all other action profiles, and define the target

outcome to be one where all play action 1 above θ∗ and all play action 0 below. The

construction in this note could be combined with arguments in Frankel et al. (2003) to

implement the target outcome.

Appendix A. Binary-Action Global Games with Continuum Players

In this section, we prove an equilibrium uniqueness result for the global game with

a continuum of players and binary actions as described in Section 2, imposing, along

with the standard monotonicity properties on the payoffs, a restriction on the noise

distribution but dispensing with the continuity of the payoffs in the state (while the

monotonicity entails the continuity of a certain key object).4

Let d : [0, 1]×Θ → R be the payoff gain function, where d(ℓ, θ) is the gain from action

1 over action 0 when proportion ℓ of players play action 1 and the state is θ ∈ Θ =

[θ0, θ1] ⊂ R, −∞ ≤ θ0 < θ1 ≤ ∞.5 We maintain Assumptions A1–A3 in Section 2 on the

function d. The state θ is drawn according to a distribution function P with support Θ,

which we assume to admit a continuous and strictly positive density:

A10. Continuous Prior Density: P admits a density p that is continuous and strictly

positive on Θ.

Each player i observes a private signal xi = θ + κζ i, κ > 0, where the noise terms

ζ i are distributed independently of θ and across players according to density f (with

distribution function F ) with support
[
−1

2
, 1
2

]
.6 A strategy of a player is a measurable

function s : Xκ → {0, 1}, Xκ = Θ + κ
[
−1

2
, 1
2

]
, where s(x) is the action that the player

plays when observing signal x. Denote this game by G(κ).

4Proposition 2.2 of Morris and Shin (2003) report a version of this result under different assumptions
(in particular, with their continuity assumption A5 but without a restriction on the noise distribution).
However, there appear to be gaps in the reported proof and we have not been able to verify or disprove
Proposition 2.2 as stated.

5[θ0, θ1] is understood as (−∞, θ1] if θ0 = −∞ and θ1 < ∞, and so on.
6As long as the support of f is bounded, the results will hold only with slight notational changes.
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Let Fκ(θ|x) denote the distribution function of θ conditional on the observation of

xi = x:

• If θ0 > −∞,

Fκ

(
θ
∣∣∣θ0 − 1

2
κ

)
=

0 if θ < θ0,

1 if θ ≥ θ0.

• For x ∈
(
θ0 − 1

2
κ, θ1 +

1
2
κ
)
,

Fκ(θ|x) =

∫ θ

−∞ f
(

x−θ′

κ

)
p(θ′)dθ′∫∞

−∞ f
(

x−θ′

κ

)
p(θ′)dθ′

.

• If θ1 < ∞,

Fκ

(
θ
∣∣∣θ1 + 1

2
κ

)
=

0 if θ < θ1,

1 if θ ≥ θ1.

We assume the following:

A11. First-Order Stochastic Dominance: For all κ, Fκ(θ|x) is nonincreasing in x.

A11 is satisfied in particular when f is log-concave, or equivalently, it satisfies the

monotone likelihood ratio property: f(x′−θ)
f(x−θ)

≤ f(x′−θ′)
f(x−θ′)

whenever x < x′ and θ < θ′.

As in Section 2, define the function Φ̄(θ) by

Φ̄(θ) =

∫ 1

0

d(ℓ, θ)dℓ,

and let

θ♯ = sup{θ ∈ Θ | Φ̄(θ) ≤ 0}

with convention sup ∅ = θ0.

Proposition A.1. Assume A1–A3, A10, and A11. (i) For any θ+ > θ♯, there exists

κ̄ > 0 such that for any κ ≤ κ̄, if strategy s survives iterated deletion of strictly dominated

strategies in G(κ), then s(x) = 1 for all x ≥ θ+ − 1
2
κ, and therefore, in any equilibrium

of G(κ), all players play action 1 whenever θ ≥ θ+. (ii) If θ0 > −∞ and Φ̄(θ0) > 0,

then there exists κ̄ > 0 such that for any κ ≤ κ̄, if strategy s survives iterated deletion of

strictly dominated strategies in G(κ), then s(x) = 1 for all x ∈ Xκ, and therefore, G(κ)

has a unique equilibrium, in which all players play action 1 for any θ ∈ Θ.

Proof. Write Dκ(x, k) for the expected payoff gain when the player observes signal x and

others play the k-threshold strategy (i.e., the strategy s such that s(x) = 1 if x ≥ k and
12



s(x) = 0 if x < k):

Dκ(x, k) =

∫
Θ

d

(
1− F

(
k − θ

κ

)
, θ

)
dFκ(θ|x),

which is nondecreasing in x by A1, A2, and A11 and nonincreasing in k by A1. Dκ(x, k)

is also continuous in (x, k) by A1, A2, and A10, as shown in Lemma 1 below.

For part (i), let θ+ ∈ (θ♯, θ] (for θ+ > θ, the conclusion clearly holds for sufficiently small

κ by A3); for part (ii), let θ+ = θ0. Let κ0 > 0 be small enough that θ+ 1
2
κ0 ≤ θ1 − 1

2
κ0,

and for part (i), θ+ − κ0 > θ♯. In the following, we assume that κ ≤ κ0. Define ξnκ

inductively by ξ0κ = ∞, and

ξnκ = sup

{
x ≥ θ+ − 1

2
κ
∣∣∣ Dκ(x, ξ

n−1
κ ) ≤ 0

}
with convention sup ∅ = θ+ − 1

2
κ, where by A3 and the monotonicity of Dκ, θ

+ − 1
2
κ ≤

· · · ≤ ξ2κ ≤ ξ1κ ≤ θ+ 1
2
κ, and by the continuity of Dκ(x, k) in x, we have Dκ(ξ

n
κ, ξ

n−1
κ ) = 0

if ξnκ > θ+ − 1
2
κ. Thus, if a strategy s survives n rounds of iterated deletion of strictly

dominated strategies, then s(x) = 1 for all x > ξnκ. Denote the limit of ξnκ by ξ∞κ . If

ξ∞κ > θ+ − 1
2
κ, then we must have Dκ(ξ

∞
κ , ξ∞κ ) = 0 by the continuity of Dκ(x, k) in

(x, k). We want to show that ξ∞κ = θ+ − 1
2
κ for all sufficiently small κ. Assume the

contrary, that there is a subsequence, again denoted ξ∞κ , such that ξ∞κ > θ+ − 1
2
κ, and

hence Dκ(ξ
∞
κ , ξ∞κ ) = 0, for all κ. Let κ1(·) be as in Lemma 2 below.

For part (i), let ϕ1 > 0 be such that ϕ1 < Φ̄(θ+ − κ0), and let Θ̂1 = [θ+ − κ0, θ + κ0].

Let d1 = maxℓ∈[0,1] |d(ℓ, θ+ − κ0)|. Then if κ ≤ κ1

(ϕ1

d1
, Θ̂1

)
, we have

Dκ(ξ
∞
κ , ξ∞κ ) ≥

∫ 1
2

− 1
2

d(1− F (z), θ+ − κ0)f(z)p(ξ
∞
κ − κz)dz∫ 1

2

− 1
2

f(z)p(ξ∞κ − κz)dz

≥
∫ 1

2

− 1
2

d(1− F (z), θ+ − κ0)f(z)dz −
∫ 1

2

− 1
2

|d(1− F (z), θ+ − κ0)|f(z)
ϕ1

d1
dz

≥ Φ̄(θ+ − κ0)− ϕ1 > 0,

contradicting Dκ(ξ
∞
κ , ξ∞κ ) = 0.

For (ii), let ϕ2 > 0 be such that ϕ2 < Φ∗(θ0), and let Θ̂2 = [θ0, θ + κ0]. Let d2 =

maxℓ∈[0,1] |d(ℓ, θ0)|. Then let κ ≤ κ1

(ϕ2

d2
, Θ̂2

)
. If ξ∞κ ≥ θ0 +

1
2
κ, we have

Dκ(ξ
∞
κ , ξ∞κ ) ≥

∫ 1
2

− 1
2

d(1− F (z), θ0)f(z)p(ξ
∞
κ − κz)dz∫ 1

2

− 1
2

f(z)p(ξ∞κ − κz)dz
≥ Φ∗(θ0)− ϕ2 > 0

13



as in part (i), while if ξ∞κ < θ0 +
1
2
κ, we have

Dκ(ξ
∞
κ , ξ∞κ ) ≥

∫ ξ∞κ −θ0
κ

− 1
2

d(1− F (z), θ0)f(z)p(ξ
∞
κ − κz)dz∫ ξ∞κ −θ0

κ

− 1
2

f(z)p(ξ∞κ − κz)dz

≥ 1

F
(

ξ∞κ −θ0
κ

) ∫ ξ∞κ −θ0
κ

− 1
2

d(1− F (z), θ0)f(z)dz

− 1

F
(

ξ∞κ −θ0
κ

) ∫ ξ∞κ −θ0
κ

− 1
2

|d(1− F (z), θ0)|f(z)
ϕ2

d2
dz

≥ 1

F
(

ξ∞κ −θ0
κ

) ∫ 1

1−F
(

ξ∞κ −θ0
κ

) d(ℓ, θ0)dℓ− ϕ2 ≥ Φ̄(θ0)− ϕ2 > 0,

contradicting Dκ(ξ
∞
κ , ξ∞κ ) = 0.

This shows that ξ∞κ = θ+ − 1
2
κ for all sufficiently small κ. Finally, for part (i),

Dκ

(
θ+ − 1

2
κ, θ+ − 1

2
κ
)
≥ Φ̄(θ+−κ0)−ϕ1 > 0 for sufficiently small κ as shown above, and

for part (ii), Dκ

(
θ0 − 1

2
κ, θ0 − 1

2
κ
)
= d(1, θ0) ≥ Φ̄(θ0) > 0. Thus, we have shown that

for all sufficiently small κ, any strategy s(x) that survives iterated deletion of strictly

dominated strategies plays action 1 for all x ≥ θ+ − 1
2
κ. □

If p is constant (i.e., P is a uniform distribution), the inequality in Lemma 2 holds as

an equality with r = 0 for any κ > 0. Thus the proof of Proposition A.1 in fact proves

the following proposition:

A12. Uniform Prior: Θ is bounded, and P is the uniform distribution on Θ (with p

denoting its density).7

Proposition A.2. Assume A1–A3, A11, and A12. (i) For any θ+ > θ♯ and any

κ < min{θ+ − θ♯, θ1 − θ}, if strategy s survives iterated deletion of strictly dominated

strategies in G(κ), then s(x) = 1 for all x ≥ θ+ − 1
2
κ, and therefore, in any equilibrium

of G(κ), all players play action 1 whenever θ ≥ θ+. (ii) If θ0 > −∞ and Φ̄(θ0) > 0, then

for any κ ≤ θ1 − θ, if strategy s survives iterated deletion of strictly dominated strategies

in G(κ), then s(x) = 1 for all x ∈ Xκ, and therefore, G(κ) has a unique equilibrium, in

which all players play action 1 for any θ ∈ Θ.

The essential uniqueness of equilibrium is obtained under the following additional as-

sumptions:

7In fact, Proposition A.2 holds also when Θ = R, and P is the improper uniform distribution on R,
where the conditional probabilities are well defined. In this case, A11 is automatically satisfied.
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A13. Lower Dominance Region: There exists θ ∈ (θ0, θ1) such that d(1, θ) < 0 for all

θ ≤ θ.

A14. Strict Laplacian State Monotonicity: inf{θ ∈ Θ | Φ̄(θ) ≥ 0} = sup{θ ∈ Θ | Φ̄(θ) ≤

0}.

Corollary A.3. Assume A1–A3, A10, A11, A13, and A14, and let θ♯ be the value of the

equality in A14. For any ε > 0, there exists κ̄ > 0 such that for any κ ≤ κ̄, if strategy

s survives iterated deletion of strictly dominated strategies in G(κ), then s(x) = 0 for all

x ≤ θ♯ − ε and s(x) = 1 for all x ≥ θ♯ + ε.

In the following, we state and prove the lemmas used in the proof of Proposition A.1.

Lemma 1. For x ∈
(
θ0 − 1

2
κ, θ1 +

1
2
κ
)
, Dκ(x, k) is continuous in (x, k).

Proof. For x ∈
(
θ0 − 1

2
κ, θ1 +

1
2
κ
)
, Dκ(x, k) is written as

Dκ(x, k) =

∫ 1
2

− 1
2

E(x, k, z)f(z)p(x− κz)dz∫ 1
2

− 1
2

f(z)p(x− κz)dz
(A.1)

with

E(x, k, z) = d

(
1− F

(
z +

k − x

κ

)
, x− κz

)
(where d(ℓ, ·) is extended outside Θ so that d(ℓ, θ) is still nondecreasing in ℓ and θ).

Fix any (x0, k0) with x0 ∈
(
θ0 − 1

2
κ, θ1 +

1
2
κ
)
. We want to show that for almost all

z ∈
[
−1

2
, 1
2

]
, E(x, k, z) is continuous in (x, k) at (x, k) = (x0, k0).

The function z 7→ E(x0, k0, z) is nonincreasing by A1 and A2 and hence continuous

except possibly on some null set N0 ⊂
[
−1

2
, 1
2

]
. Take any z0 ∈

[
−1

2
, 1
2

]
\N0, and take any

ε > 0. Let η0 > 0 be such that E(x0, k0, z0−η0)−ε ≤ E(x0, k0, z0) ≤ E(x0, k0, z0+η0)+ε,

and let η = κ
2
η0. Let |x− x0| ≤ η and |k − k0| ≤ η. Then we have

E(x, k, z0) = d

(
1− F

(
z0 +

k − x

κ

)
, x− κz0

)
≤ d

(
1− F

(
z0 − η0 +

k0 − x0

κ

)
, x0 − κ(z − η0)

)
= E(x0, k0, z0 − η0) ≤ E(x0, k0, z0) + ε

by A1 and A2. Similarly, we have E(x, k, z0) ≥ E(x0, k0, z0 + η0) ≥ E(x0, k0, z0) − ε.

Hence, |E(x, k, z0)−E(x0, k0, z0)| ≤ ε. This shows that E(x, k, z0) is continuous in (x, k)

at (x0, k0).
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Now, by A10, z 7→ p(x0 − κz) is continuous except possibly at z = x0−θ0
κ

, x0−θ1
κ

. Thus,

for all z ∈
[
−1

2
, 1
2

]
\
(
N0 ∪

{
x0−θ0

κ
, x0−θ1

κ

})
, the integrands E(x, k, z) and p(x − κz) in

(A.1) converge to E(x0, k0, z) and p(x0 − κz), respectively, as (x, k) → (x0, k0). Together

with the boundedness of d and p on the integral domain, the continuity of Dκ therefore

follows by the dominated convergence theorem. □

Lemma 2. For any r > 0 and for any compact Θ̂ ⊂ Θ, there exists κ1(r, Θ̂) > 0 such

that for any κ ≤ κ1(r, Θ̂), if z̄ ∈
(
−1

2
, 1
2

]
and

[
x− κz̄, x+ 1

2
κ
]
⊂ Θ̂, then∣∣∣∣∣∣ F (z̄)p(x− κz)∫ z̄

− 1
2
f(z′)p(x− κz′)dz′

− 1

∣∣∣∣∣∣ ≤ r.

for all z ∈
[
−1

2
, z̄
]
.

Proof. By A10, for any r > 0 and any compact Θ̂ ⊂ Θ, there exists η > 0 such that if

θ, θ′ ∈ Θ̂ and |θ−θ′| ≤ η, then |p(θ)−p(θ′)| ≤ pr where p = minθ∈Θ̂ p(θ) > 0. Set κ1(r, Θ̂)

to be any such η, and let κ ≤ κ1(r, Θ̂). Then if z̄ ∈
(
−1

2
, 1
2

]
,
[
x− κz̄, x+ 1

2
κ
]
⊂ Θ̂, and

z ∈
[
−1

2
, z̄
]
, we have∣∣∣∣∣∣ F (z̄)p(x− κz)∫ z̄

− 1
2
f(z′)p(x− κz′)dz′

− 1

∣∣∣∣∣∣ ≤
∫ z̄

− 1
2
f(z′)|p(x− κz)− p(x− κz′)|dz′∫ z̄

− 1
2
f(z′)p(x− κz′)dz′

≤

∫ z̄

− 1
2
f(z′)prdz′∫ z̄

− 1
2
f(z′)pdz′

= r,

since x−κz, x−κz′ ∈ Θ̂ and |(x−κz)− (x−κz′)| ≤ κ ≤ κ1(r, Θ̂) for all z′ ∈
[
−1

2
, z̄
]
. □

Appendix B. Optimal Information Design with Finite Approximations

In this section, by applying the results of Morris et al. (2020), we demonstrate that the

target outcome in the continuous game studied in the main text is obtained as the limit

of optimal outcomes in approximating finite games.

Within this section, assume A5 (State Space Compactness), and denote Θ = [θ0, θ1],

−∞ < θ0 < θ1 < ∞. Let the payoff gain function d : [0, 1]× Θ → R be given, where we

assume A1–A3. The potential of the game is given by

Φ(ℓ, θ) =

∫ ℓ

0

d(ℓ′, θ)dℓ′,

and the Laplacian payoff gain is Φ̄(θ) = Φ(1, θ), where we assume A6 (Laplacian State

Continuity). As in Section 3, assume that
∫
Θ
Φ̄(θ)dP (θ) < 0 and that P is continuous
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(ease of exposition). The expected Laplacian threshold is the unique θ∗ ∈ (θ0, θ1) that

solves Ψ(θ∗) = 0, where

Ψ(θ) =

∫
θ′>θ

Φ̄(θ′)dP (θ′).

For expositional purpose, we identify the target outcome (2) with the probability distri-

bution ν∗ on {0, 1} ×Θ defined by

ν∗({ℓ} × E) =

µ(E ∩ (θ∗, θ1]) if ℓ = 1,

µ(E ∩ [θ0, θ
∗]) if ℓ = 0,

(B.1)

where µ is the probability distribution on Θ induced by the distribution function P .

The objective function is given by V : [0, 1] × Θ → R with V (0, θ) = 0 for all θ ∈

Θ. We assume A7 (Objective Action Monotonicity), A8 (Restricted Convexity), and

A9 (Objective State Monotonicity), and also assume that V (1, θ) > 0 for all θ ∈ Θ

(relevancy).

B.1. Finite Games. For each natural number N ≥ 2, we construct a finite game as

follows. There are N players, IN = {1, . . . , N}, and each player i ∈ IN has binary

actions Ai = {0, 1}, where we denote AN =
∏

i∈IN Ai and AN
−i =

∏
j ̸=iAj. There are N

possible states: the state space is

ΘN =

{
θ0 +

θ1 − θ0
N

m
∣∣∣ m = 1, . . . , N

}
.

The prior distribution on ΘN is given by the probability distribution µN on Θ with

support ΘN defined by

µN

({
θ0 +

θ1 − θ0
N

m

})
= µ

((
θ0 +

θ1 − θ0
N

(m− 1), θ0 +
θ1 − θ0

N
m

])
.

The payoff gain for each player i ∈ IN is given by the function dNi on{
n
N

∣∣ n = 0, . . . , N − 1
}
×Θ defined by

dNi

( n

N
, θ
)
=

1

N
d

(
n+ 1

N
, θ

)
,

where dNi

(
n(a−i)

N
, θ
)

is the payoff gain for opponents’ action profile a−i ∈ AN
−i (with

n(a−i) denoting the number of players j 6= i such that aj = 1) and state θ. For all i ∈ IN ,

dNi

(
n(a−i)

N
, θ
)
is nondecreasing in a−i by the monotonicity of d(ℓ, θ) in ℓ (Assumption A1),

and the dominance state assumption is satisfied at θ = θ1, d
N
i (0, θ1) > 0, by d(0, θ1) > 0

(Assumption A3). Define the function ΦN on
{

n
N

∣∣ n = 0, . . . , N
}
×Θ by

ΦN
( n

N
, θ
)
=

n∑
k=1

1

N
d

(
k

N
, θ

)
.
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Then the game is a potential game with potential function ΦN
(

n(a)
N

, θ
)
, a ∈ AN (where

n(a) denotes the number of players i ∈ IN such that ai = 1).

The objective function of the information designer is given by the function V N on{
n
N

∣∣ n = 0, . . . , N
}
×Θ defined by

V N
( n

N
, θ
)
= V

( n

N
, θ
)
,

where V N
(

n(a)
N

, θ
)
is the value for the designer for action profile a ∈ AN and state θ,

which is nondecreasing in a by the monotonicity of V (ℓ, θ) in ℓ (Assumption A7). As

in Morris et al. (2020), the designer chooses an information structure to maximize the

expected value of V N under adversarial equilibrium selection, i.e., the assumption that

the players will play the worst—hence smallest—equilibrium of the resulting Bayesian

supermodular game. An information structure is represented by countable type spaces Ti,

i ∈ IN , and a common prior π over T×ΘN consistent with µN (i.e., π(T×{θ}) = µN({θ})

for all θ ∈ ΘN), where we write T =
∏

i∈IN Ti and T−i =
∏

j ̸=i Tj. In the Bayesian game

that an information structure defines, a (pure) strategy of player i ∈ IN is a function

σi : Ti → Ai, and the expected payoff gain for type ti ∈ Ti against opponents’ strategy

profile σ−i = (σj)j ̸=i is

DN
i (σ−i|ti) =

∑
t−i∈T−i,θ∈ΘN

dNi

(
n(σ−i(t−i))

N
, θ

)
π(t−i, θ|ti),

where π(t−i, θ|ti) = π(t,θ)∑
t′−i

,θ′ π((ti,t
′
−i),θ

′)
. A strategy profile σ = (σi)i∈IN is an equilibrium

if for all i ∈ IN , DN
i (σ−i|ti) ≥ 0 whenever σi(ti) = 1 and DN

i (σ−i|ti) ≤ 0 whenever

σi(ti) = 0. Here, we represent an outcome by a probability distribution on AN × ΘN .

An outcome ν ∈ ∆(AN × ΘN) is smallest equilibrium implementable (S-implementable)

if there exists an information structure ((Ti)i∈I , π) whose smallest equilibrium σ induces

that outcome, i.e., ν(a, θ) = π({t ∈ T | σ(t) = a} × {θ}) for all a ∈ AN and θ ∈ ΘN .

Let SIN ⊂ ∆(AN ×ΘN) be the set of S-implementable outcomes. Thus, the adversarial

information design problem reduces to

sup
ν∈SIN

∑
a∈AN ,θ∈ΘN

ν(a, θ)V N

(
n(a)

N
, θ

)
= max

ν∈SIN

∑
a∈AN ,θ∈ΘN

ν(a, θ)V N

(
n(a)

N
, θ

)
,

where SIN denotes the closure of SIN . An optimal outcome is an element SIN that

attains the optimal value.

Morris et al. (2020) identify a set of sufficient conditions (for general finite BAS games)

under which an optimal outcome is a perfect coordination outcome, an outcome that
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assigns positive probability only on the action profiles 0 (all playing action 0) and 1 (all

playing action 1), and is monotone in the state. The conditions are the following, which

we verify to be satisfied under the current assumptions:

• The potential ΦN satisfies convexity: By A1, for each θ ∈ ΘN ,

ΦN
( n

N
, θ
)
≤ n

N

N∑
k=1

1

N
d

(
k

N
, θ

)
=

n

N
ΦN(1, θ)

for all n = 0, . . . , N .

• V N satisfies the restricted convexity with respect to ΦN : Suppose that ΦN(1, θ) −

ΦN
(
n
N
, θ
)
< 0. Then we have

Φ(1, θ)− Φ
( n

N
, θ
)
=

∫ 1

n
N

d(ℓ, θ)dℓ

≤
N∑

k=n+1

1

N
d

(
k

N
, θ

)
= ΦN(1, θ)− ΦN

( n

N
, θ
)
< 0,

where the weak inequality follows from A1. Thus, by the restricted convexity of V with

respect to Φ (Assumption A8), we have

V N
( n

N
, θ
)
= V

( n

N
, θ
)
≤ n

N
V (1, θ) =

n

N
V N(1, θ).

• ΦN (1,θ)
V N (1,θ)

is nondecreasing in θ on the set {θ ∈ ΘN | ΦN(1, θ) < 0}: This follows from the

monotonicity of d(ℓ, θ) and V (ℓ, θ) in θ (Assumptions A2, A9).

Hence, Theorem 2 of Morris et al. (2020) applies to our finite game. Define the function

ΨN(θ) =

∫
(θ,θ1]

ΦN(1, θ′)dµN(θ′).

Let θN ∈ ΘN be the unique element in ΘN such that ΨN(θ) ≥ 0 if and only if θ ≥ θN , and

let pN = Ψ(θN )

−ΦN (1,θN )
. Then let νN be the perfect coordination outcome as defined in the

expression (4.4) in Morris et al. (2020), where we view νN as a probability distribution

on {0, 1} ×Θ with support {0, 1} ×ΘN :

νN(ℓ, θ) =



µN({θ}) if ℓ = 1 and θ > θN ,

pN if ℓ = 1 and θ = θN ,

µN({θ})− pN if ℓ = 0 and θ = θN ,

µN({θ}) if ℓ = 0 and θ < θN .

0 otherwise,

(B.2)

which by construction satisfies∫
{0,1}×Θ

ΦN(ℓ, θ)dνN(ℓ, θ) = 0.

19



By Theorem 2 of Morris et al. (2020), νN is an optimal outcome of the adversarial

information design problem for the finite game given by (dNi )i∈IN and µN .

B.2. Convergence. We now show that νN as defined in (B.2) converges weakly to the

target outcome ν∗ as defined in (B.1) as N → ∞.

Proposition B.1. Assume A1–A3 and A5–A9. Then νN → ν∗ weakly as N → ∞.

Proof. Note first that, by construction, asN → ∞, µN converges to µ weakly and ΦN(1, θ)

converges to Φ(1, θ) uniformly over θ ∈ Θ.

Take any subsequence of {νN}, again denoted by {νN}. The corresponding sequence

of {θN}, passing to a subsequence, converges to some θ∞ ∈ Θ. Let ν∞ be the probability

distribution on {0, 1} ×Θ defined by

ν∞({ℓ} × E) =

µ(E ∩ (θ∞, θ1]) if ℓ = 1,

µ(E ∩ [θ0, θ
∞]) if ℓ = 0.

By construction, νN converges to ν∞ weakly. By
∫
{0,1}×Θ

ΦN(ℓ, θ)dνN(ℓ, θ) = 0, we have

|Ψ(θ∞)| =
∣∣∣∣∫

{0,1}×Θ

Φ(ℓ, θ)dν∞(ℓ, θ)

∣∣∣∣
=

∣∣∣∣∫
{0,1}×Θ

Φ(ℓ, θ)dν∞(ℓ, θ)−
∫
{0,1}×Θ

ΦN(ℓ, θ)dνN(ℓ, θ)

∣∣∣∣
≤

∣∣∣∣∫
{0,1}×Θ

Φ(ℓ, θ)dν∞(ℓ, θ)−
∫
{0,1}×Θ

Φ(ℓ, θ)dνN(ℓ, θ)

∣∣∣∣
+ sup

θ∈Θ

∣∣Φ(1, θ)− ΦN(1, θ)
∣∣ → 0

as N → ∞ by the weak convergence νN → ν∞ (where Φ is continuous on {0, 1} × Θ by

Assumption A6) and the uniform convergence ΦN → Φ. Thus we have Ψ(θ∞) = 0, but

since θ∗ is a unique solution to Ψ(θ) = 0, this implies that θ∞ = θ∗, and hence ν∞ = ν∗.

This shows that the original sequence νN converges to ν∗. □

Appendix C. Optimal Information Design with Continuum Players

In this section, we formulate a framework of smallest equilibrium implementation with

a continuum of symmetric players and a possibly uncountable signal space, and then

apply the arguments of Morris et al. (2020) to obtain a necessary condition for smallest

equilibrium implementability (Proposition C.1) and show that the target outcome studied

in the main text is an optimal outcome to the adversarial information design problem

(Proposition C.2).
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The following notions will be used. A partially ordered set (X,≤) is upward sequen-

tially complete if any nondecreasing sequence {xn}∞n=0 in X has a supremum, sup{xn}∞n=0,

in X. For partially ordered sets (X,≤) and (Y,≤) that are each upward sequentially com-

plete, a nondecreasing function f : X → Y is upward sequentially continuous if for any

nondecreasing sequence {xn}∞n=0 in X, we have sup{f(xn)}∞n=0 = f(sup{xn}∞n=0).

As in Section 2, let Θ be the state space with a distribution function P , and let

the payoff gain function be given by the measurable function d : [0, 1] × Θ → R, where

we assume A1 (Action Monotonicity) and A4 (Integrability).8 To guarantee, for any

information structure, the smallest equilibrium to be reached by sequential best responses

from the smallest strategy, we also assume the following:

A15. Action Continuity: For each θ, d(ℓ, θ) is lower semi-continuous in ℓ.

Under A1, A15 implies that d(ℓ, θ) is upward sequentially continuous in ℓ (with respect

to the usual order on [0, 1]). Note that A15 is satisfied by the regime change game with

our choice of tie breaking in (3) in Section 3.

We focus on the following class of information structures. For any Polish (i.e., separable

and completely metrizable) space Z, let ∆(Z) denote the set of probability measures on

Z with respect to its Borel sigma-algebra B(Z), and endow ∆(Z) with the weak topology,

so that it is again a Polish space. An information structure is a pair (X, (πθ)θ∈Θ) such

that

• X is a Polish space of signals; and

• for each θ ∈ Θ, πθ ∈ ∆(∆(X)), and for each Q ∈ B(∆(X)), πθ(Q) is measurable in θ.

For an information structure (X, (πθ)θ∈Θ), the probability measure π on X×∆(X)×Θ

is defined by π(S × Q × R) =
∫
R

∫
Q
q(S)dπθ(q)dP (θ) for S ∈ B(X), Q ∈ B(∆(X)), and

R ∈ B(Θ), and a regular conditional probability π(·|x) on ∆(X)×Θ conditional on x ∈ X

is well defined (where, in particular, for any Q ∈ B(∆(X)) and R ∈ B(Θ), π(Q × R|x)

is measurable in x) and is unique up to π-a.s.; we fix any member of the equivalent class

in such a way that
∫
∆(X)×Θ

maxℓ∈{0,1} |d(ℓ, θ)|dπ(q, θ|x) < ∞ for all x ∈ X (by A4). The

marginal probability measure of π on X is denoted πX .

An interpretation based on a heuristic “law of large numbers” is as follows.9 Suppose

that the information designer commits to an information structure (X, (πθ)θ∈Θ). For

8Proposition C.1 in fact holds for any Polish state space Θ.
9See Sun (2006) for a formal measure-theoretic modelling with a continuum of players with independent

randomness.
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a state realization θ ∈ Θ, a probability distribution q ∈ ∆(X) is drawn according to

πθ. Then signals are drawn identically and independently across players according to

q and sent privately to each player. By the “law of large numbers”, q also represents

the empirical distribution of signal realizations. The interim belief of a player receiving a

signal x ∈ X about the signal distribution and the state is given by π(·|x) ∈ ∆(∆(X)×Θ).

The global game information structures, say those described in Appendix A, and the

one constructed in the proof of Proposition 1 fall within this class of information struc-

tures. Indeed, for the former, X = Θ + κ
[
−1

2
, 1
2

]
, and for θ ∈ Θ, πθ ∈ ∆(∆(X)) is the

Dirac measure on the distribution of x = θ + κζ where ζ follows the density f . For the

latter, X = {−∞} ∪
(
Ω + κ

[
−1

2
, 1
2

])
, and πθ ∈ ∆(∆(X)) is the Dirac measure on the

distribution q̄θ ∈ ∆(X) defined as follows:

• If θ < θ∗ + ε, then q̄θ = δ−∞.

• If θ∗ + ε ≤ θ < θ̄′ (resp. θ ≥ θ̄′), then q̄θ is the distribution of x = ω + κζ where

ω follows the uniform distribution over [P , P ] (resp. [P, 1]) and ζ follows the uniform

distribution over
[
−1

2
, 1
2

]
.

An information structure (X, (πθ)θ∈Θ) defines a Bayesian game with a continuum of

symmetric players and binary actions, where we only consider symmetric strategy profiles.

A strategy is a measurable function s : X → {0, 1}, which also represents a symmetric

strategy profile. To simplify the notation, we identify a strategy s with the set S =

{x ∈ X | s(x) = 1}, and thus identify the set Σ of strategies with the sigma-algebra

B(X). Endowed with set inclusion as the partial order, Σ is upward sequentially complete

(while not complete in general). An outcome is a mapping ν : Θ → ∆([0, 1]) such that

for any E ∈ B([0, 1]), νθ(E) is measurable in θ, where νθ is the probability distribution

of the proportion of players who plays action 1. Denote the set of outcomes by O. A

strategy S ∈ Σ induces an outcome ν ∈ O by νθ(E) = πθ({q ∈ ∆(X) | q(S) ∈ E}) for

E ∈ B([0, 1]).

The expected payoff gain against strategy S ∈ Σ conditional on x ∈ X is

D(S|x) =
∫
∆(X)×Θ

d(q(S), θ)dπ(q, θ|x),

which is nondecreasing and upward sequentially continuous in S by A1 and A15 and is

measurable in x. A strategy S ∈ Σ is an equilibrium if D(S|x) ≥ 0 for all x ∈ S and

D(S|x) ≤ 0 for all x ∈ X \ S. For S ∈ Σ and x ∈ X, define

β(S) = {x ∈ X | D(S|x) > 0} ∈ Σ,
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which is nondecreasing and upward sequentially continuous in S. By the Tarski-

Kantorovich Fixed Point Theorem (Van Zandt (2010, Theorem 10)), β : Σ → Σ has a

smallest fixed point S ∈ Σ, which is the smallest equilibrium, where the sequential appli-

cation of β to the smallest element ∅ ∈ Σ converges to S. An outcome ν ∈ O is smallest

equilibrium implementable (S-implementable) if there exists an information structure

whose smallest equilibrium induces ν. Let SI ⊂ O be the set of S-implementable out-

comes. The following proposition provides a necessary condition for S-implementability,

where Φ(ℓ, θ) =
∫ ℓ

0
d(ℓ′, θ)dℓ′.

Proposition C.1. Assume A1, A4, and A15. If an outcome ν is S-implementable, then

it satisfies ∫
Θ

∫
[0,1]

Φ(ℓ, θ)dνθ(ℓ)dP (θ) ≥ 0.

Proof. The proof is analogous to that of Theorem 1(1) of Morris et al. (2020), but exploits

the symmetry of the players assumed here.

Suppose that ν is S-implementable, and let (X, (πθ)θ∈Θ) be an information structure

whose smallest equilibrium S induces ν. Define the sequence {Sn}∞n=0 by S0 = ∅ and

Sn = β(Sn−1) for n = 1, 2, . . ., where S0 ⊂ S1 ⊂ S2 ⊂ · · · and
⋃∞

n=0 S
n = S. By

construction, we have D(Sn−1|x) > 0 for all x ∈ Sn. Therefore, we have

0 ≤
∞∑
n=1

∫
Sn\Sn−1

∫
Θ

d(q(Sn−1), θ)dπ(q, θ|x)dπX(x)

=

∫
Θ

∞∑
n=1

d(q(Sn−1), θ)q(Sn \ Sn−1)dπθ(q)dP (θ)

≤
∫
Θ

∞∑
n=1

∫ q(Sn)

q(Sn−1)

d(ℓ, θ)dℓdπθ(q)dP (θ)

=

∫
Θ

Φ(q(S), θ)dπθ(q)dP (θ) =

∫
Θ

∫
[0,1]

Φ(ℓ, θ)dνθ(ℓ)dP (θ),

as desired, where the second weak inequality follows from A1. □

The first weak inequality in the proof holds with strict inequality, and so does the

conclusion, if πX(S) > 0.

Now we consider the optimal information design problem within the class of information

structures as described above. The objective of the information designer is given by a

measurable function V : [0, 1] × Θ → R with V (0, θ) = 0 (normalization), where we

assume A7 (Objective Action Monotonicity) and:
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A16. Objective Integrability:
∫
Θ
V (1, θ)dP (θ) < ∞.

Suppose that the designer anticipates that the worst—hence smallest—equilibrium will

be played once an information structure is given. Thus our adversarial information design

problem is:

V ∗ = sup
ν∈SI

V (ν),

where, by abuse of notation,

V (ν) =

∫
Θ

∫
[0,1]

V (ℓ, θ)dνθ(ℓ)dP (θ).

An outcome ν ∈ O is an optimal outcome of the adversarial information design problem

if there exists a sequence of S-implementable outcomes νk ∈ SI such that νk
θ → νθ as

k → ∞ for each θ ∈ Θ and V ∗ = supk V (νk). In light of Proposition C.1, we consider the

problem

max
ν∈O

V (ν) (C.1a)

subject to ∫
Θ

∫
[0,1]

Φ(ℓ, θ)dνθ(ℓ)dP (θ) ≥ 0. (C.1b)

We now want to show the optimality of the target outcome studied in the main text.

Assume A2 (State Monotonicity) and A3 (Upper Dominance Region). As in Section 3,

also assume that
∫
Θ
Φ̄(θ)dP (θ) < 0 and that P is continuous (ease of exposition). The

expected Laplacian threshold is the unique θ∗ ∈ Θ such that∫
θ>θ∗

Φ(1, θ)dP (θ) = 0,

and the target outcome ν∗ ∈ O is

ν∗
θ =

δ1 if θ > θ∗,

δ0 if θ ≤ θ∗,

where δℓ ∈ ∆([0, 1]) is the Dirac measure on ℓ. For the objective function V , assume

A8 (Restricted Convexity) and A9 (Objective State Monotonicity), and also assume that

V (1, θ) > 0 for all θ ∈ Θ (relevancy).

Proposition C.2. Assume A1–A4, A7–A9, A15, and A16. Then ν∗ is an optimal

outcome of the adversarial information design problem.

Proof. Since by Proposition 1 in Section 4, there exists a sequence of S-implementable

outcomes νε such that νε
θ → ν∗

θ and V (νε) → V (ν∗) as ε → 0, it suffices to prove that ν∗
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is an optimal solution to the problem (C.1). The proof is analogous to that of Theorem 2

of Morris et al. (2020).

An outcome ν ∈ O is a perfect coordination outcome if νθ({0, 1}) = 1 for all θ ∈ Θ.

The outcome ν∗ is a perfect coordination outcome.

Claim 1. For any outcome ν ∈ O satisfying (C.1b), there exists a perfect coordination

outcome ν ′ satisfying (C.1b) such that V (ν ′) ≥ V (ν).

Proof. Let

α(ℓ, θ) =

1 if Φ(ℓ, θ) ≤ Φ(1, θ),

ℓ if Φ(ℓ, θ) > Φ(1, θ).

Then for all (ℓ, θ), we have Φ(ℓ, θ) ≤ α(ℓ, θ)Φ(1, θ) (by A1) and V (ℓ, θ) ≤ α(ℓ, θ)V (1, θ)

(by A7 and A8). Let ν satisfy (C.1b). Let

α(θ) =

∫
[0,1]

α(ℓ, θ)dνθ(ℓ),

and define the perfect coordination outcome ν ′ by

ν ′
θ = α(θ)δ1 + (1− α(θ))δ0.

Then we have∫
Θ

∫
[0,1]

Φ(ℓ, θ)dν ′
θ(ℓ)dP (θ) =

∫
Θ

∫
[0,1]

α(ℓ, θ)Φ(1, θ)dνθ(ℓ)dP (θ)

≥
∫
Θ

∫
[0,1]

Φ(ℓ, θ)dνθ(ℓ)dP (θ) ≥ 0.

Therefore, ν ′ satisfies (C.1b). We also have

V (ν ′) =

∫
Θ

∫
[0,1]

α(ℓ, θ)V (1, θ)dνθ(ℓ)dP (θ)

≥
∫
Θ

∫
[0,1]

V (ℓ, θ)dνθ(ℓ)dP (θ) = V (ν),

as claimed. □

Let O1 ⊂ O be the set of perfect coordination outcomes. In light of Claim 1, the

problem (C.1) reduces to

max
ν∈O1

∫
Θ

νθ({1})V (1, θ)dP (θ) (C.2a)

subject to ∫
Θ

νθ({1})Φ(1, θ)dP (θ) ≥ 0. (C.2b)

Claim 2. ν∗ is an optimal solution to (C.2).
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Proof. Let θ♯ = inf{θ ∈ Θ | Φ(1, θ) ≥ 0}, where θ∗ < θ♯.

First, by construction, ν∗ satisfies the constraint (C.2b) with equality. Then, let ν ∈ O1

be such that V (ν) > V (ν∗). Define the functions w,w∗, w∗∗ : Θ → R by

w(θ) =

νθ({1})V (1, θ) if θ ≤ θ♯,

V (1, θ) if θ > θ♯,

w∗(θ) = ν∗
θ({1})V (1, θ) =

0 if θ ≤ θ∗,

V (1, θ) if θ > θ∗,

w∗∗(θ) =

w∗(θ) + V ′−V (ν∗)
P (θ♯)−P (θ∗)

if θ∗ < θ ≤ θ♯,

w∗(θ) otherwise,

where V ′ =
∫
Θ
w(θ)dP (θ) ≥ V (ν) > V (ν∗). By construction, w(θ) = w∗∗(θ) for all

θ > θ♯,
∫ θ♯
θ

w(θ′)dP (θ′) ≤
∫ θ♯
θ

w∗∗(θ′)dP (θ′) for all θ ≤ θ♯, and
∫
θ≤θ♯

w(θ)dP (θ) =∫
θ≤θ♯

w∗∗(θ)dP (θ). Since Φ(1,θ)
V (1,θ)

(< 0) is nondecreasing for θ < θ♯ (by A2 and A9), we thus

have
∫
θ≤θ♯

Φ(1,θ)
V (1,θ)

w(θ)dP (θ) ≤
∫
θ≤θ♯

Φ(1,θ)
V (1,θ)

w∗∗(θ)dP (θ), and therefore
∫
Θ

Φ(1,θ)
V (1,θ)

w(θ)dP (θ) ≤∫
Θ

Φ(1,θ)
V (1,θ)

w∗∗(θ)dP (θ). Hence, we have∫
Θ

νθ({1})Φ(1, θ)dP (θ) ≤
∫
Θ

Φ(1, θ)

V (1, θ)
w(θ)dP (θ)

≤
∫
Θ

Φ(1, θ)

V (1, θ)
w∗∗(θ)dP (θ)

=

∫
Θ

Φ(1, θ)

V (1, θ)
w∗(θ)dP (θ) +

V ′ − V (ν∗)

P (θ♯)− P (θ∗)

∫ θ♯

θ∗

Φ(1, θ)

V (1, θ)
dP (θ)

<

∫
Θ

ν∗
θ({1})Φ(1, θ)dP (θ) = 0,

which means that ν does not satisfy the constraint (C.2b). This implies that ν∗ is an

optimal solution to the problem (C.2). □

The proof of Proposition C.2 is thus completed. □
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