IMPLEMENTATION VIA INFORMATION DESIGN
USING GLOBAL GAMES

STEPHEN MORRIS, DAISUKE OYAMA, AND SATORU TAKAHASHI

ABSTRACT. For binary-action supermodular games with a continuum of symmetric
players, we show that simple global game information structures can be used to im-

plement an optimal outcome under adversarial equilibrium selection.

1. INTRODUCTION

In Morris et al. (2020), we studied implementation by information design in binary-
action supermodular (BAS) games. An outcome is smallest equilibrium implementable if
there exists an information structure such that that outcome is induced by the smallest
equilibrium of the game with that information structure. We characterized smallest
equilibrium implementable outcomes in general finite BAS games. In particular, we
provided a canonical implementing information structure that works for all implementable
outcomes and all BAS games.

In this companion note, we provide a simple, alternative smallest equilibrium imple-
mentation of a particular “target outcome” under the additional restrictions that payoffs
are symmetric and higher states give a higher incentive to choose the high action. The
target outcome is an (approximate) solution to an information design problem—to be
described in detail below—where the information designer prefers the high action to be
chosen. The target outcome is one where all players choose the high action if and only

if the state is above some threshold state, where the threshold state is the lowest state
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with the property that, conditional on the state being higher than the threshold, the high
action is in expectation “Laplacian”, i.e., the best response to a uniform belief about the
proportion of the players choosing the high action. The target outcome is shown to be
smallest equilibrium implementable by first publicly announcing whether or not the state
lies above the threshold state, and then creating a latent state that garbles the true state
and further having the players observe a noisy signal about the latent state, as in the
standard global games.

We carry out our analysis with a continuum of symmetric players and a continuous
state space. The class of environments we consider encompasses the regime change games
studied by Inostroza and Pavan (2020) and Li et al. (2019) and other coordination games
widely studied in the literature. Among many possible constructions that implement the
target outcome, ours has the attractive feature that the implementing information struc-
ture depends only on the threshold defining the target outcome, but otherwise the same
construction works for all symmetric BAS games. Li et al. (2019) present an alternative,
arguably more complicated, implementation of the same outcome, which is tailored to
regime change games. But a finite signal version of their information structure is an
(essentially unique) optimal information structure when the designer is constrained to
only use finite information structures with up to K signals, and their unconstrained op-
timal information structure is characterized as the limit of the optimal finite information
structures as K — oo.

We now describe in more detail (i) the setting, (ii) the target outcome, (iii) the optimal
information design problem for which the target outcome is a solution, and (iv) the
implementing information structure.

The setting is as follows. A continuum of players choose between a low action, 0,
and a high action, 1. A player’s “payoff gain” is the difference in payoffs from choosing
action 1 over action 0 as a function of the proportion of players choosing action 1 and
the state 6 unknown to the players. We assume action monotonicity (the payoff gain is
nondecreasing in the proportion of players who choose 1), state monotonicity (the payoff
gain is nondecreasing in the state ), and upper dominance region (the payoff gain is

positive for sufficiently high 6, even if all other players choose action 0).



We now describe the target outcome. The Laplacian payoff gain at state 6 is a player’s
expected payoff gain if he has a uniform belief over the proportion of other players choos-
ing action 1. Let 8" be the unique state such that the expected Laplacian payoff gain
conditional on 6 > 0" is zero. Our “target outcome” is the outcome where all players
choose action 1 if and only if # > 6*. The contribution of this note is to show how
standard “global game information structures” implement the target outcome.

Arguments from Morris et al. (2020) establish that the target outcome is an (approx-
imate) optimal outcome of an information design problem with adversarial equilibrium
selection. Consider an information designer who benefits from more players choosing
action 1, with the benefit increasing in the state. The designer can commit to any in-
formation structure which sends signals privately or publicly to the players depending
on the state. Suppose that the designer chooses an information structure to maximize
her objective function anticipating that the worst equilibrium for her will be played in
the resulting Bayesian supermodular game. By the action monotonicity of the objective,
this will be the smallest equilibrium. Under an additional restriction on the designer’s
objective function, a discrete analogue of the target outcome is an optimal outcome in
an N-player, N-state analogue of the setting in this note, and those optimal outcomes in
the discrete games converge to the target outcome as N — 0o.! Our conditions cover, in
particular, the case of a regime change game where the designer’s objective is to maxi-
mize the probability that the status quo is maintained (the problem studied by Li et al.
(2019)).

We now describe the implementing information structure in more detail. Recall that
the target outcome generates “success” (action 1 played by all players) if and only if
the state 6 is above the critical threshold #*. The implementing information structure
is constructed as follows. First, we partition the state space into two regions, a “failure
region” (—o0, 6" +¢) and a “success region”for [#" 4 ¢, 00), and publicly announce which
region the state € belongs to. Then, if the state 6 is in the success region, we garble
0 to produce a latent state w that is distributed uniformly over a certain interval and
only reveals which element of two sub-regions, [6* +¢,8') and [#, 00), @ belongs to, where

’,00) in which action 1 is a dominant action. Finally,

[0, 00) is a “dominance region” [#
'In Appendix B, we provide a formal treatment of this convergence result. In Appendix C, we
present an alternative formulation of the information design problem directly dealing with a continuum
of symmetric players and a continuous state space and show that the target outcome is an optimal
outcome of this version.
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players observe a noisy signal of the latent state w as in global games. We can choose € > 0
arbitrarily small and @ arbitrarily large, so the success region is arbitrarily close to the set
of states where there is success under the target outcome. Now if it is publicly announced
that the state is in the failure region, the smallest equilibrium will have all players choosing
action 0. But if the state is in the success region, the game is equivalent to a global game
(with state w) with a one-sided dominance region and possibly discontinuous payoffs. By
a standard iterative dominance argument for global games, the smallest equilibrium will
have all players choosing action 1, since, by construction, the Laplacian payoff gain is
always positive within this sub-game (Morris and Shin (2003)).? Thus the target outcome
is approximately smallest equilibrium implementable, where the approximation can be
made arbitrarily tight as € — 0. Note that the same implementing information structure
works for any payoff function satisfying our maintained assumptions. While the details
of the implementing information structure are delicate, the main ingredients are very
simple: make a public announcement about whether the state is in the success region,
and, if the state is in the success region, introduce noisy global game signals about its

exact value.

2. SETTING

We consider a setting with a continuum of players and symmetric payoffs as in Morris
and Shin (2003, Section 2.2). Each player ¢ chooses an action a; € A; = {0,1}. A state
0 € O is drawn according to a distribution function P with support ©, where © C R is
a closed interval (with nonempty interior int ©). A player’s payoff gain function is given
by d: [0,1] x © — R, where d(¢,0) is the gain from choosing action 1 over action 0 when
proportion ¢ of players choose action 1 and the state is 6.

We impose the following assumptions:

A1l. Action Monotonicity: For each 6, d(¢,0) is nondecreasing in /.

A2. State Monotonicity: For each ¢, d(¢,0) is nondecreasing in 6.

A3. Upper Dominance Region: There exists § € int © such that d(0,0) > 0 for all
0> 6.

Under A1, A3 implies that d(¢,6) > 0 for all £ € [0,1] and 6 > 6.

2In Appendix A, we provide a formal proof that accommodates payoff discontinuity, under a restriction
on the noise distribution.
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We write
3(0) = / (e, 0)d
0
for the Laplacian payoff gain at state 6, namely, the expected payoff gain when a player
has a Laplacian (i.e., uniform) belief over the proportion of players choosing action 1
when the state is . By A2, ® is nondecreasing, and by A3, ®(#) > 0 for all § > 6.
The Laplacian threshold is the critical state 6* € © such that the Laplacian payoff gain

becomes nonpositive:

6" = sup{f € © | (9) < 0}

with convention sup () = inf ©.

In a global game (Carlsson and van Damme (1993), Morris and Shin (2003)), players
observe the true state with noise. Specifically, each player i observes a private signal
x; = 0 + Kk(;, kK > 0, where the noise terms ¢, are distributed independently of # and
across players according to a density f. Morris and Shin (2003) consider the setting
described above that embeds many applications in the literature. Under additional tech-
nical assumptions, one can show that action 1 is played whenever § > 6°, if the noise is
sufficiently small, by any strategy that survives iterative dominance. For completeness, in
Appendix A, we state and prove this result under the assumptions that the distribution
of # admits a continuous and strictly positive density (Assumption A10) and that the
conditional distribution of # given the observation of z; is increasing in x; in the first-order
stochastic dominance order (Assumption A11), to accommodate possible discontinuity of

payoffs in # in our construction below.

3. TARGET OUTCOME

In the following, we assume that the payoffs (and hence ®) are integrable with respect

to P:
A4. Integrability: [, maxgeo,1y [d(¢,0)|dP(6) < oo.

Note that, under A1 and A2, this condition is automatically satisfied if © is bounded.
To ease the exposition, we also assume that [ ®(6)dP(f) < 0 and that P is continuous
(i.e., the probability measure it induces is atomless).

An outcome is a mapping v: © — A([0,1]), where vy € A([0,1]) is a probability
distribution on [0, 1] which represents a distribution of the proportion of the players

playing action 1 at state 8. We now define the target outcome. The expected Laplacian
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Ficure 1. Laplacian thresholds

threshold is the critical state 8* € int © such that the expected Laplacian payoff gain

conditional on 6 > #* becomes zero, i.e., the unique #* € int © that solves
/ O(0)dP(h) = 0. (1)
0>6*

This is well defined by the assumptions of A3, [, ®(0)dP(#) < 0, and the continuity of P.
Note that 8* < 6* by construction (Figure 1). Now the definition of our target outcome
v*is
. 61 if 0 > 07,
6 we<e )
where §, € A([0, 1]) is the Dirac measure on ¢ € [0, 1].
As an illustration, let us consider two leading examples, satisfying Assumptions Al-

A3, from the global games literature. Morris and Shin (2003) studied global games with

the linear payoff gain function

d(0,0) =0+6—1

with {# € © | 0 > 1} # 0 (to satisfy A3). In this case, we have ®(f) = § — 3, and thus
the Laplacian threshold is 6% = % Hence,

/1¢mympw3_<y—Pw»@mma>ey-my
0'>6
and therefore, the expected Laplacian threshold #* is the unique solution to
E[0]0 > %] = 6"
Morris and Shin (1998, 2004) studied regime change games with the payoff gain function

¢ ifr>1-9
d(¢,0) = ’ (3)
c—1 if0<1-0

with {# € © | 8 > 1} # 0 (to satisfy A3), where action 0 corresponds to attacking the

regime (with cost ¢ € (0,1)), while action 1 to abstaining from attacking. In this case,
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we have ®(6) = k() — (1 — ¢), where

0 iféd<0,
k(@) =<6 if0<6<1,
1 if6>1,

and thus the Laplacian threshold is #* = 1 — ¢. Hence,
| a@ape) = 1~ po) Er@)0 > 6 - ),
0'>0

and therefore, the expected Laplacian threshold #* is the unique solution to

E[k(0)|0 > 7] = 0",
4. SMALLEST EQUILIBRIUM IMPLEMENTATION OF THE TARGET OUTCOME

We now show that the target outcome v* is arbitrarily approximately smallest equilib-
rium implementable. For € > 0, define the outcome v* by
) 1 if 0 Z 0* + ¢,

ve(0) =
50 if 0 <0 +e.

Proposition 1. Assume A1-A/. For any sufficiently small € > 0, there exists an infor-

mation structure whose smallest equilibrium induces the outcome v°.

Proof. Let € > 0, where [,_ .. ®(0)dP(0) > 0. We assume that ¢ is sufficiently small
that

d(0,0) <0 forall <0 +¢e? (4)
Let @ € int © be sufficiently large that
5/
/ (6)dP(0) > 0 (5)
0*+¢
and
d(0,0) >0 for all § > 0. (6)
We denote

where 0 < P < P < 1.
We construct a desired information structure as follows. Conditional on the realization

of 6, a signal z; is sent to each player ¢ according to the following law:

o If 6 < 0" + ¢, then x; = —oo for all players 1.

3Since ®(A) > 0 for large 6 by A3, we must have ®(6* + ¢) < 0, and hence d(0,6* + ¢) < 0, for small
e > 0.
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o If 0 > 6" + ¢, then x; = w + k(; for each player i, where
o w is drawn from the uniform distribution on [P, P] if §* + ¢ < 6 < ¢ and from the
uniform distribution on [P, 1] if § > @, and
o ¢, are distributed independently of § and w and across players according to a distri-

bution F' on [—%, %] with a log-concave density, say the uniform distribution, and

k > 0 is a scaler parameter with k <1 — P.

Thus, first, there is a public announcement whether § < " +¢ (in which case all players
observe a signal —oo) or § > 0" + ¢ (in which case all players observe a signal of finite
value). Then in the latter event, unconditionally on whether §* +¢ <0 < @ or 0 > ¢/,
the “latent state” w is uniformly distributed over €2 = [P, 1], which is observed with
idiosyncratic noise &, by each player i. A strategy of a player is a measurable function
s: {—oo}U(Q+k [—3,3]) — {0,1}, where s(z) is the action that the player plays when
observing signal z. Denote this game by G.

Now, if 8 < 6" 4+ &, the expected payoff gain when the others play action 0,
éf9<9*+5 d(0,8)dP(6), is nonpositive by (4), and hence, all players play action 0 in the
smallest equilibrium of G. If § > 0" + ¢, the game is equivalent to the global game with

uniform prior where the base payoff gain function d(¢,w), w € Q, is given by

5/
Y[ aweapw) itw <P,
dt,w)y=247F N L Jose
— [ d(t,0)dP9) ifw>P,
1—P Joso

which is nondecreasing in £ and w, where d(0,w) > 0 for all w > P by (6). The Laplacian
payoff gain Cf(w) in this game is thus given by

gl
1 ! / B(0)dP(H) if w < P,

(w) = / e, yae =14 F N L Jrse
0 — (0)dP(0) ifw> P,

1-P 0>0'

P@ﬂ>

and hence (i)(w) > 0 for all w € Q. By the assumption x < 1 — P, it follows from
Proposition A.2(ii) in Appendix A that the global game has a unique equilibrium, in
which all players play action 1. Therefore, in all states # > 6% + ¢, all players play action

1 in any (hence in the smallest) equilibrium of G. O
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5. OPTIMALITY OF THE TARGET OUTCOME

The target outcome v* studied in this note is, under player symmetry, a continuous
analog of the optimal outcome derived in Morris et al. (2020, Theorem 2) for the finite-
player, finite-state case, under certain assumptions to be described below. In this section,
we briefly review the analysis there. In Appendix B, we formally construct a sequence of
games with IV symmetric players and N states along which the optimal outcome converges
as N — oo to v*. In Appendix C, we present an alternative framework of the information
design problem maintaining continuum players and continuous states (with a heuristic
“law of large numbers” assumption) and prove by the same arguments as in Morris et al.
(2020) (modulo technical differences) that v* is an optimal outcome of the continuous
version of the problem.

Within this section, we assume the following technical conditions to guarantee the

convergence as N — oc:

A5. State Space Compactness: O is bounded (and hence compact).
A6. Laplacian State Continuity: ®(6) is continuous in 6.

AG is satisfied in the two examples discussed in Section 3.
Suppose that an information designer has an objective function V': [0, 1] x © — R with
V(0,0) = 0 for all § € © by normalization, where V (¢, ) is the value that the designer

receives when proportion ¢ of players play 1 and the state is 6. We impose:
AT. Objective Action Monotonicity: For each 0, V (¢, 0) is nondecreasing in /.

Suppose that the designer chooses an information structure to maximize V' anticipating
that the worst—hence smallest by A7—equilibrium of the resulting Bayesian supermod-
ular game. Morris et al. (2020) identified sufficient conditions for an outcome to be an
optimal solution of this information design problem for general finite BAS games. A
perfect coordination outcome is one where either all players choose action 1 or all players
choose action 0: in our setting, this requires vy({0,1}) = 1 for all §. Morris et al. (2020)
show that a perfect coordination outcome will always be optimal if (i) the game has a
convex potential, and (ii) the designer’s objective satisfies restricted convexity with re-
spect to the potential. In our current setting with symmetric players, (i) the game has a
potential .

O(¢,0) = / (', 0)de,
0

which, by Al, satisfies convexity, ®(¢,0) < (®(1,0) for all £ and 6, while (ii) requires:
9



A8. Restricted Convexity: V(¢,0) < (V(1,6) whenever ®(¢,0) > ®(1,6).

In order to guarantee the optimal outcome to be monotone in the state, we in addition

require:
A9. Objective State Monotonicity: For each ¢, V (¢, 0) is nondecreasing in 6.

We also assume that V(1,0) > V(0,6) = 0 for all § € © by removing irrelevant states.

Since ®(f) = ®(1,0) is nondecreasing by A2, this guarantees that the “cost benefit

» D(1,0)
V(1,0)

the benefit of having all play action 1 at state 6, and, when ®(1,0) < 0, —®(1, §) measures

ratio is nondecreasing in 6 whenever ®(1,0) < 0. Intuitively, V(1,6) represents
the cost of inducing players to do so. Thus, by Theorem 2 of Morris et al. (2020), it is
optimal to have action 1 played at as many higher states as possible consistent with
the smallest equilibrium implementability, which is equivalent to the expectation of the
potential being positive. Thus, we have a perfect coordination optimal outcome. In
Appendix B, this optimal outcome for the N-player N-state game is shown to converge
to the target outcome v* as N — oo (Proposition B.1).

Assumptions A7-A9 are satisfied in the following examples. An easy case is where, for
some o > 1, V(¢,0) = £~ for all 6, where V(1,60) < ¢V (1,0) for all £ and 6. This designer
objective V' encompasses the case where the designer wants to maximize the expected
proportion of players playing action 1 (when o = 1) and the case where she wants to
maximize the probability that all players play action 1 (when a — 00).

A more subtle case arises for the regime change game (described in Section 3) when

the designer’s objective is to maximize the probability of regime change:

1 ife>1-0,
0 ife<1-9,

V(L 0) =

which is nondecreasing in ¢ and 6 (A7, A9). This is the designer objective maximized in

Li et al. (2019). In this game, the potential is given by

ol —(1—k(B) ife>1-0,

o(0,0) =
—(1—c)t if0<1-9,

where k(f) = 6 if 0 < 6 <1 and k() = 1if § > 1. This function is increasing in ¢ if
¢ >1—6, and therefore we have ®(¢,6) > ®(1,0) only if / <1 —0. Butif ¢ <1—6, we
have V' (¢,0) = 0 < ¢V (1,0), establishing the restricted convexity of V' with respect to ®

(AS).
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6. DiscussioN: FINITE-PLAYER BAS POTENTIAL GAMES

We could extend the argument in this note to general BAS potential games, allowing
asymmetric payoffs across players. We would analogously let 6% be the state such that
the expected potential of action profile 1 (where all players play action 1) conditional on
0 > 0" exceeds the expected potential of all other action profiles, and define the target
outcome to be one where all play action 1 above #* and all play action 0 below. The
construction in this note could be combined with arguments in Frankel et al. (2003) to

implement the target outcome.

APPENDIX A. BINARY-ACTION GLOBAL GAMES WITH CONTINUUM PLAYERS

In this section, we prove an equilibrium uniqueness result for the global game with
a continuum of players and binary actions as described in Section 2, imposing, along
with the standard monotonicity properties on the payoffs, a restriction on the noise
distribution but dispensing with the continuity of the payoffs in the state (while the
monotonicity entails the continuity of a certain key object).?

Let d: [0,1] x © — R be the payoff gain function, where d(¢, 6) is the gain from action
1 over action 0 when proportion ¢ of players play action 1 and the state is 8 € © =
[00,0:] CR, —0c0 < 6 < 6; < 00.> We maintain Assumptions A1-A3 in Section 2 on the
function d. The state 6 is drawn according to a distribution function P with support O,

which we assume to admit a continuous and strictly positive density:

A10. Continuous Prior Density: P admits a density p that is continuous and strictly

positive on ©.

Each player ¢ observes a private signal x; = 6 + k(;, > 0, where the noise terms

¢, are distributed independently of # and across players according to density f (with

plays when observing signal x. Denote this game by G(k).

4Proposition 2.2 of Morris and Shin (2003) report a version of this result under different assumptions
(in particular, with their continuity assumption A5 but without a restriction on the noise distribution).
However, there appear to be gaps in the reported proof and we have not been able to verify or disprove
Proposition 2.2 as stated.
5[90,91] is understood as (—o0,604] if g = —co and 61 < oo, and so on.
6As long as the support of f is bounded, the results will hold only with slight notational changes.
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Let F,(0|x) denote the distribution function of € conditional on the observation of

T; = X

o If 6y > —0Q,

1 ) 0 if 0 < 6y,

F, (9‘90 ~
2 1 if 6> 6,.

e For z € («90 — %/@,01+%/€),

=

Fy(0]z) =

S (52) p(@)ae
I (5 eas
o If A < o,
E. (9‘01 N l/{) _ 0 ifé <6y,
2 1 ifo>6,.
We assume the following:
A11. First-Order Stochastic Dominance: For all k, Fy;(f|x) is nonincreasing in .
A11 is satisfied in particular when f is log-concave, or equivalently, it satisfies the

[@=0) — f(a'—0)
a0 = Fa o)

As in Section 2, define the function ®(6) by

monotone likelihood ratio property: whenever 7 < 2’ and 0 < 0'.

B(0) = /0 1 d(t, 9)dt,

and let
0" = sup{f € © | (h) < 0}

with convention sup () = 6.

Proposition A.1. Assume A1-AS3, A10, and A11. (i) For any 6" > 0*, there exists
k > 0 such that for any k < K, if strategy s survives iterated deletion of strictly dominated
strategies in G(k), then s(x) =1 for all x > 07 — 3k, and therefore, in any equilibrium
of G(k), all players play action 1 whenever > 0%. (ii) If 0y > —oo and ®(y) > 0,
then there exists kK > 0 such that for any k < R, if strateqy s survives iterated deletion of

strictly dominated strategies in G(k), then s(x) =1 for all x € X, and therefore, G(k)

has a unique equilibrium, in which all players play action 1 for any 6 € ©.

Proof. Write D, (z, k) for the expected payoff gain when the player observes signal x and

others play the k-threshold strategy (i.e., the strategy s such that s(z) =1 if x > k and
12



s(x) =0if x < k):

Di(a, k) = /@d <1 "y (kT_9> ,9) dF,(0)z),

which is nondecreasing in x by Al, A2, and A1l and nonincreasing in k& by Al. D, (x,k)
is also continuous in (x, k) by Al, A2 and A10, as shown in Lemma 1 below.

For part (i), let 6 € (6%, 8] (for * > 6, the conclusion clearly holds for sufficiently small
r by A3); for part (ii), let 67 = 6. Let ko > 0 be small enough that 6 + %:‘i() <6 — %/@0,
and for part (i), 87 — ko > #*. In the following, we assume that x < rg. Define ¢"
inductively by 52 = 00, and

£ = sup {x >0t — %FL D (z, & < O}

2 ;
- <€ <€) <0+ 1k, and by the continuity of D (z, k) in z, we have D, (&), &' =0

with convention sup () = §° — 1k, where by A3 and the monotonicity of D,,, 87 — 1x <
if &8 > 0% — %/ﬁ?. Thus, if a strategy s survives n rounds of iterated deletion of strictly
dominated strategies, then s(z) = 1 for all x > £. Denote the limit of £ by £>°. If
£ > 07 — 1k, then we must have D,(£°,£7°) = 0 by the continuity of D,(xz,k) in
(z,k). We want to show that &° = 67 — 3k for all sufficiently small x. Assume the
contrary, that there is a subsequence, again denoted £°, such that £° > 6 — %FL, and
hence D, (£7°,£7) =0, for all k. Let x,(+) be as in Lemma 2 below.

For part (i), let ¢, > 0 be such that ¢, < ®(8F — k), and let ©; = [0F — ko, 0 + Ko).

Let di = maxyejo 1] |d({,0" — Ko)|. Then if k < ﬁ1(¢

d—i, @1), we have
J2, (1= F(2),07 = so) f(2)p(E — w2)dz

DA(€F,£67) > :
I3 FEp(Er — w2

> / d(1— F(2),0 — ko) f(2)d — /

: |d(1 — F(2),0" — mo)\f(z)f;—idz

1
2 2

Z @(9+ — Ko) — le > 0,
contradicting D, (£7°,£7°) = 0.

For (ii), let ¢, > 0 be such that ¢, < ®*(6,), and let O, = [0y, 0 + ko). Let dy =

maxyeo,1] [d(¢, 0p)|. Then let x < /11(‘5—;, @2) If £° > 6 + 1k, we have

7, d(1— F(2), 00) f(2)p(€ — r2)d2
Dy(eX €9y > =2 > O*(fg) — ¢, > 0
J2, FEEr — w2

13




as in part (i), while if £° < 0y + 35, we have
© o d(1 = F(2),00)f(2)p(E5 — kz)dz

D€, 68) = 2
= FPES — r2)de

> FE / d(1 — F(2),00) f(2)dz

€20 —0g
1 ) 0
R (Em) /; A1 = F(2),60)|/(2) 2 d2

K

1
> @ | e
contradicting D, (£7°,£7°) = 0.

This shows that &° = 67 — 1k for all sufficiently small x. Finally, for part (i),
D, (0+ — %/{, 0" — %I{) > ®(0" — ko) — ¢, > 0 for sufficiently small x as shown above, and
for part (i), Dy (0o — 3%,00 — 2x) = d(1,600) > () > 0. Thus, we have shown that
for all sufficiently small k, any strategy s(x) that survives iterated deletion of strictly

dominated strategies plays action 1 for all z > 61 — %/{. O

If p is constant (i.e., P is a uniform distribution), the inequality in Lemma 2 holds as
an equality with » = 0 for any x > 0. Thus the proof of Proposition A.1 in fact proves

the following proposition:

A12. Uniform Prior: © is bounded, and P is the uniform distribution on © (with p
denoting its density).”

Proposition A.2. Assume A1-A3, All, and A12. (i) For any 07 > 6" and any
Kk < min{f0" — 0.0, — 0}, if strategy s survives iterated deletion of strictly dominated
strategies in G(k), then s(z) = 1 for all x > 0% — %/@', and therefore, in any equilibrium
of G(k), all players play action 1 whenever 6 > 0%. (ii) If 6 > —oo and ®(6) > 0, then
for any k < 0, — 0, if strategy s survives iterated deletion of strictly dominated strategies
in G(k), then s(x) =1 for all x € X, and therefore, G(k) has a unique equilibrium, in

which all players play action 1 for any 6 € O.

The essential uniqueness of equilibrium is obtained under the following additional as-
sumptions:

"In fact, Proposition A.2 holds also when © = R, and P is the improper uniform distribution on R,
where the conditional probabilities are well defined. In this case, A1l is automatically satisfied.
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A13. Lower Dominance Region: There exists 8 € (6y,6;) such that d(1,0) < 0 for all
6 < 4.
A14. Strict Laplacian State Monotonicity: inf{f € © | ®(f) > 0} = sup{f € © | &(9) <

0}.

Corollary A.3. Assume A1-A3, A10, A11, A13, and A14, and let 6° be the value of the
equality in A1j. For any e > 0, there exists kK > 0 such that for any k < R, if strategy
s survives iterated deletion of strictly dominated strategies in G(k), then s(x) =0 for all

r <0 —cands(z) =1 forallz > 6" 4.
In the following, we state and prove the lemmas used in the proof of Proposition A.1.
Lemma 1. For x € (60 — %/ﬁ,ﬁl + %Fd), D, (z, k) is continuous in (x,k).

Proof. For x € (90 - %’@ 01 + %’1)7 D, (z, k) is written as
f_%; E(x,k, 2)f(2)p(x — k2)dz
2

f,%% f(2)p(r — Kz)dz

E(x,k,z):d(l—F(z—l—k%x),x—%z)

(where d(¢,-) is extended outside © so that d(¢,6) is still nondecreasing in ¢ and @).

Dy(x, k) =

(A.1)

with

Fix any (o, ko) with zq € (90 — %m,@l + %Fé) We want to show that for almost all

z € [-3,1], E(z,k, z) is continuous in (z, k) at (z,k) = (zo, ko).

The function z — E(xg, ko, z) is nonincreasing by Al and A2 and hence continuous

11
272

|. Take any z € [—1, 1] \ No, and take any

except possibly on some null set Ny C [ 315

e > 0. Let 9 > 0 be such that E(xg, ko, z0—1y) —€ < E(xo, ko, 20) < E(xo, ko, 20+19) +¢,
and let = £ny. Let |z — x| < n and |k — ko] < 7. Then we have

E—
E(x,k:,zo):d(l—F<zo+ x) ,x—mzo)
K
kO—ZL'O
d{1—F |z —mny+ - , o — k(2 — 1)

= E(Io, ]{50, z20 — 7]0) S E(ZE(), k)o,Zo) +é

IA

by Al and A2. Similarly, we have E(z,k,29) > E(xo, ko, 20 + 1) > E(x¢, ko, 20) — €.
Hence, |E(x, k, z9) — E(xo, ko, 20)| < €. This shows that E(x, k, zp) is continuous in (z, k)

at (xo, ko).
15



Now, by A10, z — p(xg — Kkz) is continuous except possibly at z = ’”OKGO, 20=01  Thus,
for all z € [—%,%} \ (No U {MT%,mT_(h}), the integrands F(z,k,z) and p(z — kz) in
(A.1) converge to E(xo, ko, z) and p(zq — kz), respectively, as (z, k) — (zo, ko). Together
with the boundedness of d and p on the integral domain, the continuity of D, therefore

follows by the dominated convergence theorem. U

Lemma 2. For any r > 0 and for any compact O C O, there exists Ky (T, é) > 0 such

that for any rk < ml(r,é), if Z € (—%, %] and [a: — KZ, T+ %/ﬂ C (:), then

_ F@E)p(r - r2)
o1 fp(x — k2')dz

2

-1 <r.

for all z € [—%, z}.

Proof. By A10, for any r > 0 and any compact © C O, there exists n > 0 such that if
0,0’ € © and |#—0'| < 1, then |p(0) —p(8')| < pr where p = min, g p(€) > 0. Set (7, 0)
to be any such 7, and let k < (7, @) Then if z € (—%, %}, [$ — KZ, T+ %Hs] C 6, and

z € [—%,2], we have

] F(Z)p(x — k2) . f f lp(x — fiZ) plr — k2')|dZ
S f@ple = s2)dz | f + f()p(e — k)2
f % 2 )prdz’ B
=T f iz

since & — kz,x— k2 € © and |(x — kz) — (2 —k2)| < & < Ki(r, ©) for all 2/ € [-3.2]. O

APPENDIX B. OPTIMAL INFORMATION DESIGN WITH FINITE APPROXIMATIONS

In this section, by applying the results of Morris et al. (2020), we demonstrate that the
target outcome in the continuous game studied in the main text is obtained as the limit
of optimal outcomes in approximating finite games.

Within this section, assume A5 (State Space Compactness), and denote © = [0y, 04],
—00 < By < 01 < 00. Let the payoff gain function d: [0,1] x © — R be given, where we

assume A1-A3. The potential of the game is given by

l
o(0,0) = / (', 0)dr,
0

and the Laplacian payoff gain is ®() = ®(1,6), where we assume A6 (Laplacian State

Continuity). As in Section 3, assume that [, ®(0)dP(#) < 0 and that P is continuous
16



(ease of exposition). The expected Laplacian threshold is the unique 6 € (6, 6;) that
solves W(0*) = 0, where
¥ (9) = / B(0')dP(0).
0'>0
For expositional purpose, we identify the target outcome (2) with the probability distri-
bution v* on {0,1} x © defined by

V(e x By — {MENELBD =1, (B.1)
w(E N6y, 0%]) if £ =0,
where p is the probability distribution on © induced by the distribution function P.
The objective function is given by V: [0,1] x © — R with V(0,0) = 0 for all €
©. We assume A7 (Objective Action Monotonicity), A8 (Restricted Convexity), and
A9 (Objective State Monotonicity), and also assume that V(1,0) > 0 for all 6 € ©

(relevancy).

B.1. Finite Games. For each natural number N > 2, we construct a finite game as
follows. There are N players, IV = {1,...,N}, and each player i € IV has binary

actions A; = {0, 1}, where we denote AN = [[;c;x A; and AY; =[], ; A;. There are N

possible states: the state space is
0, — 0
oN { Dy 1 - 0

m‘mzl,...,N}.

The prior distribution on ©V is given by the probability distribution p» on © with
support ©F defined by

0, —0 0, -0 6, —0
MN({90+ 1N Om}>:u((90+ 1N 0(m—1),90+ 1N Om})

The payoff gain for each player ¢ € IV is given by the function d¥ on
{% | n:O,...,N—l} x © defined by

F(0) - 20 (5500).

where d (Mﬁ) is the payoff gain for opponents’ action profile a_; € AY, (with

N
n(a_;) denoting the number of players j # i such that a; = 1) and state 6. For alli € IV,

dNy (%, 6’) is nondecreasing in a_; by the monotonicity of d(¢, 6) in £ (Assumption A1),
and the dominance state assumption is satisfied at 6 = 6y, d¥(0,6,) > 0, by d(0,6;) > 0
(Assumption A3). Define the function &V on {% ’ n=20,..., N} x O by

(3~ ()

17



Then the game is a potential game with potential function ®V ("](\?) , 9), a € AN (where

n(a) denotes the number of players i € IV such that a; = 1).
The objective function of the information designer is given by the function V¥ on

{%|n:0,...,N}x@deﬁnedby

V() =V (70)

where VY ("}5%0) is the value for the designer for action profile a € AV and state 6,

which is nondecreasing in a by the monotonicity of V(¢,0) in ¢ (Assumption AT7). As
in Morris et al. (2020), the designer chooses an information structure to maximize the
expected value of V¥ under adversarial equilibrium selection, i.e., the assumption that
the players will play the worst—hence smallest—equilibrium of the resulting Bayesian
supermodular game. An information structure is represented by countable type spaces T;,
i € IV, and a common prior 7 over T'x © consistent with ¥ (i.e., 7(T x {0}) = u™ ({6})
for all € ©Y), where we write T = [[,.;v T; and T_; = H#iTj. In the Bayesian game
that an information structure defines, a (pure) strategy of player i € IV is a function
o;: T; — A;, and the expected payoff gain for type t; € T; against opponents’ strategy
profile o_; = (), is

Do = Y (M) we o,

t_;€T_;,0cON

where m(t_;,0]t;) = 5 _Q:r(&fi),t’, ) A strategy profile 0 = (0;);erv is an equilibrium

if for all i € IV, DN(o_;|t;) > 0 whenever o;(t;) = 1 and D¥(o_;|t;) < 0 whenever

oi(t;) = 0. Here, we represent an outcome by a probability distribution on AY x OV,
An outcome v € A(AYN x ©F) is smallest equilibrium implementable (S-implementable)
if there exists an information structure ((7});cr, 7) whose smallest equilibrium ¢ induces
that outcome, i.e., v(a,0) = 7({t € T | a(t) = a} x {0}) for all a € AN and § € OF.
Let SI™ € A(AN x ©V) be the set of S-implementable outcomes. Thus, the adversarial
information design problem reduces to

sup > vla, VY (”](\f>,9>:max S vy (%9)

N SIN
vESI™ [ AN geoN VESTT e AN peoN

where STV denotes the closure of SIV. An optimal outcome is an element STV that
attains the optimal value.
Morris et al. (2020) identify a set of sufficient conditions (for general finite BAS games)

under which an optimal outcome is a perfect coordination outcome, an outcome that
18



assigns positive probability only on the action profiles 0 (all playing action 0) and 1 (all
playing action 1), and is monotone in the state. The conditions are the following, which

we verify to be satisfied under the current assumptions:

e The potential ®V satisfies convexity: By Al, for each § € OV,

N
<1>N< ) %Z d( >:%¢N(1,9)
=1
forallm=0,...,N.

o V¥V satisfies the restricted convexity with respect to ®V: Suppose that ®V(1,0) —
N (%,8) < 0. Then we have

O(1,0) — @ (%6) - /nl d(t,0)de

N
1 k n
<> S 10) =¥ e - e (10)
—ZN(N’> (1,0) N ) <0
where the weak inequality follows from A1l. Thus, by the restricted convexity of V' with
respect to @ (Assumption A8), we have

N[N n n n. N
i — i < . )
v (N,e) V(N,e)_NV(1,9) SVN(L,0)
o {{;Zil Z)) is nondecreasing in 0 on the set {§ € ©~ | ®¥(1,0) < 0}: This follows from the
monotonicity of d(¢,6) and V(¢,6) in 6 (Assumptions A2, A9).

Hence, Theorem 2 of Morris et al. (2020) applies to our finite game. Define the function
oY () = / SN (1, 0y ().
(0,04]

Let 6 € OV be the unique element in ©" such that ¥V (#) > 0 if and only if § > 0~ and

let pN S {Cib)

= NENy Then let vV be the perfect coordination outcome as defined in the

expression (4.4) in Morris et al. (2020), where we view vV

on {0,1} x © with support {0,1} x OV:

as a probability distribution

(

N ({0}) if =1 and 6 > 6",
PN if =1 and § = 6",
vN(,0) = S N ({6)) —pV i £=0and § = 0", (B.2)
uN({6}) if =0 and 0 < 6",
L0 otherwise,

which by construction satisfies

/ SN (6, 0)dv™ (£, 0) =
{0,1}x©
19



By Theorem 2 of Morris et al. (2020), vV is an optimal outcome of the adversarial

N

information design problem for the finite game given by (d;

i )iEIN and :U’N’

B.2. Convergence. We now show that vV as defined in (B.2) converges weakly to the

target outcome v* as defined in (B.1) as N — 0.
Proposition B.1. Assume A1-A3 and A5-A9. Then v — v* weakly as N — oo.

Proof. Note first that, by construction, as N — oo, u” converges to u weakly and &V (1, 6)
converges to ®(1,0) uniformly over § € ©.

Take any subsequence of {vV'}, again denoted by {v"}. The corresponding sequence
of {9N }, passing to a subsequence, converges to some 0 € ©. Let 1> be the probability

distribution on {0, 1} x © defined by

Ve < B) = W(E N [00,0%]) i = 0.

By construction, v converges to v> weakly. By [i,, o @V (£,0)dv™((,0) = 0, we have
peol=| [ awowio)
{0,1}x©

_ / (L, 0)dv™(L,0) — / BN (0, 0)d™ (¢, 9)'
{0,1}x© {0,1}x©

VAN

/ (0, 0)dv™= (L, 0) — / (0, )™ (¢, 9)’
{0,1}x© {0,1}x©

+sup |®(1,6) — ®V(1,6)| =0
0cO

as N — oo by the weak convergence vV — 1> (where ® is continuous on {0,1} x © by
Assumption A6) and the uniform convergence &V — ®. Thus we have ¥(6>°) = 0, but

*

since 6" is a unique solution to ¥(#) = 0, this implies that 6 = 6", and hence v = v*.

N

This shows that the original sequence v converges to v*. U

APPENDIX C. OPTIMAL INFORMATION DESIGN WITH CONTINUUM PLAYERS

In this section, we formulate a framework of smallest equilibrium implementation with
a continuum of symmetric players and a possibly uncountable signal space, and then
apply the arguments of Morris et al. (2020) to obtain a necessary condition for smallest
equilibrium implementability (Proposition C.1) and show that the target outcome studied
in the main text is an optimal outcome to the adversarial information design problem

(Proposition C.2).
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The following notions will be used. A partially ordered set (X, <) is upward sequen-
tially complete if any nondecreasing sequence {™}>° ; in X has a supremum, sup{z"}52,
in X. For partially ordered sets (X, <) and (Y, <) that are each upward sequentially com-
plete, a nondecreasing function f: X — Y is upward sequentially continuous if for any
nondecreasing sequence {z"}>° ; in X, we have sup{f(2")}5>, = f(sup{z"}>2,).

As in Section 2, let © be the state space with a distribution function P, and let
the payoff gain function be given by the measurable function d: [0,1] x © — R, where

8 To guarantee, for any

we assume Al (Action Monotonicity) and A4 (Integrability).
information structure, the smallest equilibrium to be reached by sequential best responses

from the smallest strategy, we also assume the following:
A15. Action Continuity: For each 6, d(¢, ) is lower semi-continuous in /.

Under A1, A15 implies that d(¢, #) is upward sequentially continuous in ¢ (with respect
to the usual order on [0, 1]). Note that A15 is satisfied by the regime change game with
our choice of tie breaking in (3) in Section 3.

We focus on the following class of information structures. For any Polish (i.e., separable
and completely metrizable) space Z, let A(Z) denote the set of probability measures on
Z with respect to its Borel sigma-algebra B(Z), and endow A(Z) with the weak topology,
so that it is again a Polish space. An information structure is a pair (X, (7g)geo) such

that

e X is a Polish space of signals; and

e for each 0 € ©, mp € A(A(X)), and for each Q € B(A(X)), m(Q) is measurable in 6.

For an information structure (X, (7g)geo), the probability measure 7 on X x A(X) x ©
is defined by (S x @ x R) = [}, [, a(S)dmo(q)dP(0) for S € B(X), Q € B(A(X)), and
R € B(0), and a regular conditional probability 7(-|x) on A(X)x © conditional on z € X
is well defined (where, in particular, for any @ € B(A(X)) and R € B(0), 7(Q x R|x)
is measurable in z) and is unique up to 7-a.s.; we fix any member of the equivalent class
in such a way that fA(X)x@ maxe{o,1} |d(¢, 0)|dn(q,0|x) < oo for all x € X (by A4). The
marginal probability measure of 7 on X is denoted 7.

An interpretation based on a heuristic “law of large numbers” is as follows.? Suppose

that the information designer commits to an information structure (X, (mg)peo). For

8Proposition C.1 in fact holds for any Polish state space ©.
9See Sun (2006) for a formal measure-theoretic modelling with a continuum of players with independent
randomness.
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a state realization # € ©, a probability distribution ¢ € A(X) is drawn according to

mg. Then signals are drawn identically and independently across players according to

q and sent privately to each player. By the “law of large numbers”, ¢ also represents

the empirical distribution of signal realizations. The interim belief of a player receiving a

signal z € X about the signal distribution and the state is given by 7(-|z) € A(A(X)xO).

The global game information structures, say those described in Appendix A, and the
one constructed in the proof of Proposition 1 fall within this class of information struc-
tures. Indeed, for the former, X = © 4+ k [—%, %], and for 0 € ©, 1y € A(A(X)) is the
Dirac measure on the distribution of x = 6 + k( where ( follows the density f. For the
latter, X = {—oco} U (Q+ x[—1,1]), and my € A(A(X)) is the Dirac measure on the
distribution gy € A(X) defined as follows:

o If0 <0 +¢, then gy = 0_.

e If 0"+ e <6 < @ (vesp. § > @), then Gy is the distribution of + = w + k( where
w follows the uniform distribution over [P, P| (resp. [P, 1]) and ¢ follows the uniform
distribution over [—%, %}

An information structure (X, (mg)sco) defines a Bayesian game with a continuum of
symmetric players and binary actions, where we only consider symmetric strategy profiles.
A strategy is a measurable function s: X — {0, 1}, which also represents a symmetric
strategy profile. To simplify the notation, we identify a strategy s with the set S =
{r € X | s(z) = 1}, and thus identify the set ¥ of strategies with the sigma-algebra
B(X). Endowed with set inclusion as the partial order, 3 is upward sequentially complete
(while not complete in general). An outcome is a mapping v: © — A([0,1]) such that
for any E € B([0,1]), vp(FE) is measurable in 0, where vy is the probability distribution
of the proportion of players who plays action 1. Denote the set of outcomes by O. A
strategy S € ¥ induces an outcome v € O by vy(E) = mp({q € A(X) | ¢(S) € E}) for
E € B(][0,1]).

The expected payoff gain against strategy S € ¥ conditional on x € X is

D(S|z) = /A o lalS). (0, 01),

which is nondecreasing and upward sequentially continuous in S by Al and A15 and is
measurable in z. A strategy S € X is an equilibrium if D(S|x) > 0 for all x € S and
D(S|z) <0foral z € X\ S. For S € ¥ and x € X, define

B(S) ={z € X | D(S|z) > 0} € %,
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which is nondecreasing and upward sequentially continuous in S. By the Tarski-
Kantorovich Fixed Point Theorem (Van Zandt (2010, Theorem 10)), 8: ¥ — X has a
smallest fixed point S € ¥, which is the smallest equilibrium, where the sequential appli-
cation of [ to the smallest element () € 3 converges to S. An outcome v € O is smallest
equilibrium implementable (S-implementable) if there exists an information structure
whose smallest equilibrium induces v. Let SI C O be the set of S-implementable out-

comes. The following proposition provides a necessary condition for S-implementability,

where ® (¢, 0) fo 0)dr'.

Proposition C.1. Assume A1, A4, and A15. If an outcome v is S-implementable, then

/ / B¢, 0)dve(£)dP(0) > 0.
o J[o1]

Proof. The proof is analogous to that of Theorem 1(1) of Morris et al. (2020), but exploits

it satisfies

the symmetry of the players assumed here.
Suppose that v is S-implementable, and let (X, (mg)sco) be an information structure
whose smallest equilibrium S induces v. Define the sequence {S"}°° by S° = () and

S" = B(S™!) for n = 1,2,..., where S° ¢ S ¢ $* € --- and |J,_,5" = S. By

construction, we have D(S" !|x) > 0 for all z € S™. Therefore, we have

D / Aa(5™"), 6)dn(q. 0l2)drx (2)
/Zd (S™Y),0)q(S™\ S" V) dmg(q)dP(6)

/ / " d(¢,0)dldr,(q)dP(6)

Sn— 1)

- / (q(S), 6)dma(q)dP(9) / [ B0 OPH)

as desired, where the second weak inequality follows from Al. O

The first weak inequality in the proof holds with strict inequality, and so does the
conclusion, if mx(S) > 0.

Now we consider the optimal information design problem within the class of information
structures as described above. The objective of the information designer is given by a
measurable function V: [0,1] x © — R with V(0,0) = 0 (normalization), where we

assume A7 (Objective Action Monotonicity) and:
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A16. Objective Integrability: [, V(1,60)dP(f) < oco.
Suppose that the designer anticipates that the worst—hence smallest—equilibrium will

be played once an information structure is given. Thus our adversarial information design

problem is:
V* = sup V(v),

vesSI

where, by abuse of notation,
V(v) = / / V(€,0)dvy(€)dP(0).
e J0,1]

An outcome v € O is an optimal outcome of the adversarial information design problem
if there exists a sequence of S-implementable outcomes v¥ € SI such that vf — vy as
k — oo for each € © and V* = sup, V(v*). In light of Proposition C.1, we consider the

problem
max V (v) (C.1a)

veO

subject to
// O(0,0)dve(L)dP(6) > 0. (C.1b)
e J[0,1]

We now want to show the optimality of the target outcome studied in the main text.
Assume A2 (State Monotonicity) and A3 (Upper Dominance Region). As in Section 3,
also assume that [, ®(6)dP () < 0 and that P is continuous (ease of exposition). The

expected Laplacian threshold is the unique #* € © such that
/ B(1,0)dP(0) = 0,
0>6*
and the target outcome v* € O is
o1 if 0> 07,
do if 0 < 67,

where 6, € A([0,1]) is the Dirac measure on ¢. For the objective function V, assume
A8 (Restricted Convexity) and A9 (Objective State Monotonicity), and also assume that
V(1,6) > 0 for all # € © (relevancy).

Proposition C.2. Assume A1-Aj, A7-A9, Al5, and A16. Then v* is an optimal

outcome of the adversarial information design problem.

Proof. Since by Proposition 1 in Section 4, there exists a sequence of S-implementable

outcomes v° such that v — v and V(v°) — V(v*) as € — 0, it suffices to prove that v*
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is an optimal solution to the problem (C.1). The proof is analogous to that of Theorem 2
of Morris et al. (2020).
An outcome v € O is a perfect coordination outcome if v4({0,1}) = 1 for all 6 € ©.

The outcome v* is a perfect coordination outcome.

Claim 1. For any outcome v € O satisfying (C.1b), there exists a perfect coordination

outcome V' satisfying (C.1b) such that V (V') > V(v).

Proof. Let

1 if ®(¢,0) < 9(1,0),

¢ it oL, 6) > o(1,0).
Then for all (¢,0), we have ®(¢,0) < a(¢,0)®(1,6) (by Al) and V(¢,0) < a(¢,0)V(1,0)
(by A7 and AB). Let v satisfy (C.1b). Let

a(G):/[OI]a(ﬁ,G)dug(f),

a(l,0) =

and define the perfect coordination outcome v’ by
vy = a(0)d; + (1 — a(h))do.

Then we have

//{01 (€,0)dvy(£)dP(0 //M a(l,0)®(1,0)dvy(£)dP(0)
> / /[O ”cb(e,e)du@(z)dp(e) > 0.

Therefore, v/ satisfies (C.1b). We also have

/ / (6, 0)V (1, 0)dvy(0)dP(0)
[0,1]
> /@ /[0 V0 OaP0) = V),

as claimed. 0

Let O; C O be the set of perfect coordination outcomes. In light of Claim 1, the
problem (C.1) reduces to

{/ré%?/@ug({l})V(l,G)dP(H) (C.2a)
subject to
/ ve({1})®(1,0)dP(0) > 0. (C.2Db)
e

Claim 2. v* is an optimal solution to (C.2).
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Proof. Let 8y = inf{ € © | &(1,6) > 0}, where 6" < 0.
First, by construction, v* satisfies the constraint (C.2b) with equality. Then, let v € O,
be such that V' (v) > V(v*). Define the functions w, w*, w**: © — R by
vo({1HV(1,0) if 0 <0y,

w(f) =

V(1,0) if 0 > 0y,

0 if 0 <6,

w(0) = v({1H)V(L,0) = V(1,0) if6> 06",

. VI_V(W*) e g
(6)+W if 6 <9§¢9ﬁ,

w
w*(0) otherwise,

where V' = [jw(0)dP(#) > V(v) > V(v*). By construction, w(f) = w**(6) for all
0 > eﬁ, Tiw(0)dP(#) < [ w(¢)dP(8) for all § < 6, and Jo<o, w(0)dP(0) =
f0<0 (9)dP(0). Since {?8’2% (< 0) is nondecreasing for § < 6 (by A2 and A9), we thus
have f9<9 VEIG) (0)dP(0) < f9<6 {{;(i Z) **(0)dP(0), and therefore [ {{;Eig))w(Q)dP(G) <

Jo VEI Z) **(0)dP(6). Hence, we have

/ ({11)B(1,0)dP(0) < /@ %’Z;w((;)dp(e)
OLO) w(0)ap(0)

S AN L

vp({1})®(1,0)dP(0) = 0,

which means that v does not satisfy the constraint (C.2b). This implies that v* is an

optimal solution to the problem (C.2). O
The proof of Proposition C.2 is thus completed. O
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