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Abstract. In Morris et al. (2023a), we proposed and studied the notion of strict ro-

bustness, a strict version of robustness of Kajii and Morris (1997). This note discusses

another strict version that had been introduced earlier by Oury and Tercieux (2007).

By definition it is weaker than ours, and the two versions are equivalent in binary-action

supermodular games. In many-action supermodular games, they are equivalent if the

perturbations of the respective versions are restricted to be supermodular.

1. Introduction

In a broad sense, an equilibrium of a complete information game is robust if every

“nearby” incomplete information game has an equilibrium that induces an action distri-

bution close to the original equilibrium (Kajii and Morris, 1997). In the original definition

of Kajii and Morris (1997), “nearby” incomplete information games are games in which

with high probability, players know that their payoff functions are precisely equal to those

of the complete information game. In Morris et al. (2023a), we proposed a strict version

of robustness, strict robustness, by allowing for a larger class of “nearby” incomplete in-

formation games, where with high probability, players know that their payoffs are close to

those of the complete information game in expectation. We showed that unique correlated

equilibrium and strict monotone potential maximizer (if the game or the strict monotone

potential is supermodular) are each sufficient for strict robustness, and the latter is also

necessary in binary-action supermodular (BAS) games.

In this note, we discuss a similar strict robustness notion that had been introduced

earlier by Oury and Tercieux (2007), which we failed to acknowledge in Morris et al.
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(2023a). In their version, “nearby” incomplete information games are defined as games

in which with high probability, players know that their payoffs are close to those of

the complete information game with probability one. By definition, “nearby” games in

their sense are “nearby” games in our sense, and therefore, their strict robustness notion

is weaker than ours; thus we refer to their notion as weak strict robustness here—see

Section 2 for the formal definitions. Clearly, our sufficiency results mentioned above apply

also to weak strict robustness. The results of Oury and Tercieux (2007) are summarized

in Section 3.

In Morris et al. (2023a), we adopted our definitions of “nearby” incomplete information

games and strict robustness in order to establish a clean connection with our study

on implementation by information design (Morris et al., 2024). Indeed, in proving our

necessity result for BAS games, we relied on the full implementation result of Morris et al.

(2024), where the information structures constructed to implement a target outcome are

“nearby” games in our sense as the prior distribution approaches the complete information

limit. However, it is also possible to construct “nearby” games in the sense of Oury

and Tercieux (2007) to implement such an outcome, as we will formally describe in

Section 4. Together with existing results, this implies that strict robustness and weak

strict robustness are equivalent in BAS games.

Section 5 presents our new results on the robustness notions when “nearby” games

of the two versions are restricted to be supermodular—strict robustness and weak strict

robustness to supermodular elaborations. For many-action supermodular games, by ex-

tending the construction given in Oury and Tercieux (2007) we establish the existence

of and characterize the smallest set that is (weakly) strictly robust to supermodular

elaborations. When the smallest set is a singleton, the two notions become equivalent.

2. (Weak) Strict Robustness

We are given a finite set I of players, a finite set Ai of actions of each i ∈ I, and a payoff

function gi : A → R of each i ∈ I, where we denote A =
∏

j∈i Ai, A−i =
∏

j ̸=i Aj etc. as

usual. The complete information game (I, A,g) is referred to as g = (gi)i∈I whenever no

confusion arises.

An elaboration of g is an incomplete information game consisting of the same sets

I and (Ai)i∈I of players and actions as those of g, a countable set Ti of types of each

i ∈ I, a common prior P ∈ ∆(T ), and a bounded payoff function ui : A× T → R of each
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i ∈ I, where we denote u = (ui)i∈I . An elaboration is referred to as (T, P,u).1 An action

distribution µ ∈ ∆(A) is an equilibrium action distribution of elaboration U = (T, P,u)

if there exists a Bayes-Nash equilibrium σ = (σi)i∈I , σi : Ti → ∆(Ai), of U that induces

µ, i.e., µ(a) =
∑

t∈T P (t)
∏

i∈I σi(ti)(ai) for all a ∈ A.

Given an elaboration (T, P,u) of g, for i ∈ I and η ≥ 0, let T gi,η
i denote the set of all

types of player i for which the payoff function differs from gi by at most η in (conditional)

expectation, i.e.,

T gi,η
i =

ti ∈ Ti

∣∣∣∣ ∑
t−i∈T−i

P (t−i|ti)max
a∈A

|ui(a, (ti, t−i))− gi(a)| ≤ η

 .

Also let T̂ gi,η
i denote the set of all types of player i for which the payoff function differs

from gi by at most η with (conditional) probability one, i.e.,

T̂ gi,η
i =

{
ti ∈ Ti

∣∣∣∣max
a∈A

|ui(a, (ti, t−i))− gi(a)| ≤ η

for all t−i ∈ T−i such that P (t−i|ti) > 0

}
.

We denote T g,η =
∏

i∈I T
gi,η
i and T̂ g,η =

∏
i∈I T̂

gi,η
i .

The notion of “nearby” incomplete information games in Morris et al. (2023a) is as

follows:

Definition 1 (Morris et al. (2023a)). For ε ≥ 0 and η ≥ 0, an incomplete information

game (T, P,u) is an (ε, η)-elaboration of g if P (T g,η) ≥ 1− ε.

The notion employed in Oury and Tercieux (2007), which we call strong (ε, η)-elaboration,

is as follows:

Definition 2 (Oury and Tercieux (2007)). For ε ≥ 0 and η ≥ 0, an incomplete informa-

tion game (T, P,u) is a strong (ε, η)-elaboration of g if P (T̂ g,η) ≥ 1− ε.

Since T̂ gi,η
i ⊂ T gi,η

i by definition, a strong (ε, η)-elaboration is an (ε, η)-elaboration.

Strong (ε, 0)-elaborations and (ε, 0)-elaborations are equivalent, and they are equivalent

to ε-elaborations of Kajii and Morris (1997).

Thus, the corresponding robustness notions are as follows:

1In Morris et al. (2023a), we employed a formulation that explicitly separates payoff states and belief
types, while here we follow Oury and Tercieux (2007), where the payoff functions directly depend on
types.
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Definition 3 (Kajii and Morris (1997)). An action distribution µ ∈ ∆(A) is KM-robust

in g if for every δ > 0, there exists ε > 0 such that every (ε, 0)-elaboration of g has an

equilibrium action distribution ν such that maxa∈A |ν(a)− µ(a)| ≤ δ.

Definition 4 (Morris et al. (2023a)). An action distribution µ ∈ ∆(A) is strictly robust

in g if for every δ > 0, there exist ε > 0 and η > 0 such that every (ε, η)-elaboration of

g has an equilibrium action distribution ν such that maxa∈A |ν(a)− µ(a)| ≤ δ.

Definition 5 (Oury and Tercieux (2007)). An action distribution µ ∈ ∆(A) is weakly

strictly robust in g if for every δ > 0, there exist ε > 0 and η > 0 such that every strong

(ε, η)-elaboration of g has an equilibrium action distribution ν such that maxa∈A |ν(a)−

µ(a)| ≤ δ.

By definition, weak strict robustness is stronger than KM-robustness and weaker than

strict robustness: i.e., if µ is weakly strictly robust, then it is KM-robust, and if it is

strictly robust, then it is weakly strictly robust. If µ is weakly strictly robust in g, then

it is the action distribution of an essential equilibrium of g (Wu and Jiang, 1962).

In Morris et al. (2023a), we provided sufficient conditions for strict robustness in terms

of unique correlated equilibrium and strict monotone potential (MP) maximizer. Thus,

these conditions are also sufficient for weak strict robustness: if g has a unique correlated

equilibrium, then it is the unique weakly strictly robust equilibrium of g; and if a∗ ∈ A

is a strict MP maximizer of g with strict monotone potential v, and either g or v is

supermodular, then the degenerate action distribution on a∗ is weakly strictly robust in g.2

In particular, if a∗ is a strictly p-dominant equilibrium in g for some p = (pi)i∈I ∈ [0, 1]I

with
∑

i∈I pi < 1, then it is a strict MP maximizer with a supermodular strict monotone

potential, so that it is weakly strictly robust in g.3

3. (Strong) Limit Full Implementation by Supermodular Elaborations in

Supermodular Games

In what follows, we focus on supermodular games g: for each i ∈ I, Ai is linearly

ordered, and for ai > a′i, gi(ai, a−i)− gi(a
′
i, a−i) is weakly increasing in a−i.

2See Morris et al. (2023a, Definition 4) for the definition.
3We take this opportunity to correct the typographical errors in the definition of strict p-dominance

in Morris et al. (2023a, page 363): the condition should read “πi(a
∗
−i) > pi ⇒ brgii (πi|Ai) = {a∗i }”.
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In this section, we describe the results of Oury and Tercieux (2007) on limit full im-

plementation and its implications. An elaboration (T, P,u) is supermodular if u(·, t) is

supermodular for all t ∈ T .

Definition 6. An action distribution µ ∈ ∆(A) is (resp. strongly) limit fully imple-

mentable by supermodular elaborations in g if for any δ > 0, ε > 0, and η > 0, there

exists a supermodular (resp. strong) (ε, η)-elaboration of g that has a unique equilibrium

action distribution ν, and it satisfies maxa∈A |ν(a)− µ(a)| ≤ δ.

Let LFI (g) (resp. L̂FI (g)) denote the set of (resp. strongly) limit fully implementable

action distributions by supermodular elaborations in g. By definition, L̂FI (g) ⊂ LFI (g),

and clearly, these sets are closed and convex.

In our language, Oury and Tercieux (2007) showed the following for all supermodular

games g:

• L̂FI (g) ̸= ∅. In particular, there exists an action profile a∗ ∈ A such that the degenerate

distribution on a∗ is strongly limit fully implementable by supermodular elaborations

(Oury and Tercieux, 2007, Theorem 1).

• As an implication of this existence result, if an action distribution is weakly strictly

robust, then it is degenerate on some pure action profile and is a unique action distri-

bution that is strongly limit fully implementable by supermodular elaborations (Oury

and Tercieux, 2007, Corollary 1).

• In particular, any (possibly noise-dependent) global game selection is strongly limit fully

implementable by supermodular elaborations. It follows that if an action distribution

is weakly strictly robust, then it is a noise-independent global game selection (Oury

and Tercieux, 2007, Theorem 2).

Therefore, the statement in Morris et al. (2023a, page 366) that strict robustness

implies noise-independent selection in all supermodular games holds true.

4. Equivalence in Binary-Action Supermodular Games

In this section, we restrict our attention to binary-action supermodular (BAS) games.

In particular, we will show that strict robustness and weak strict robustness are equivalent

in these games.
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First, for BAS games, limit full implementability and strong limit full implementability

are equivalent and characterized by sequential obedience and reverse sequential obedi-

ence.4 Let SO1(g) (resp. SO0(g)) denote the set of action distributions that satisfy (resp.

reverse) sequential obedience.

Proposition 1. For any BAS game g, we have L̂FI (g) = LFI (g) = SO1(g) ∩ SO0(g).

The inclusion L̂FI (g) ⊂ LFI (g) is by definition; the equality LFI (g) = SO1(g) ∩

SO0(g) follows from the arguments in Morris et al. (2024) and is already reported in

Morris et al. (2023a, Proposition A.5). The inclusion SO1(g)∩ SO0(g) ⊂ L̂FI (g) in fact

follows from a modification of the construction in Morris et al. (2024); see Appendix A.1.

Combining this result with previous results of Oury and Tercieux (2007) and ours, we

now have the following:

Theorem 1. For any BAS game g and any action distribution µ ∈ ∆(A), the following

conditions are equivalent:

(1) µ is strictly robust in g.

(2) µ is weakly strictly robust in g.

(3) {µ} = L̂FI (g).

(4) {µ} = LFI (g).

(5) µ is degenerate on a noise-independent global game selection in g.

(6) {µ} = SO1(g) ∩ SO0(g).

(7) µ is degenerate on a strict MP maximizer of g.

The implication (1) ⇒ (2) is by definition; (2) ⇒ (3) by Oury and Tercieux (2007) as

reported in Section 3; (3) ⇔ (4) ⇔ (6) by Proposition 1 above; (5) ⇔ (6) by Morris et al.

(2023b);5 (6) ⇔ (7) by Oyama and Takahashi (2020) and Morris et al. (2024) (as reported

in Morris et al. (2023a, Proposition 3)); (7) ⇒ (1) by Morris et al. (2023a, Theorem 1).

Note that the implications (7) ⇒ (1) ⇒ (2) ⇒ (3) and (4) ⇒ (3) hold for many-action

supermodular games (the last holds since L̂FI (g) ̸= ∅ by Oury and Tercieux (2007)). We

will show in the next section that (3) ⇒ (4) also holds for many-action supermodular

games.

Beyond BAS games, the equivalence in Theorem 1 breaks down (note that sequential

obedience and reverse sequential obedience are defined only for binary-action games);

4See Morris et al. (2023a, Definition 5) for the definition.
5Morris et al. (2023a, page 366) misstated that Oyama and Takahashi (2023) showed (5) ⇔ (7) in

BAS games; the correct reference is Morris et al. (2023b).
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in particular, (5) ⇒ (3) and (5) ⇒ (4) fail in symmetric two-player three-action su-

permodular games (Basteck and Daniëls, 2011; Oyama and Takahashi, 2011). It is not

known whether strict robustness is strictly stronger than weak strict robustness in general

(supermodular) games.

5. (Weak) Strict Robustness to Supermodular Elaborations in

Supermodular Games

In this section, for general supermodular games, we show that strict robustness and

weak strict robustness are equivalent if robustness is required only with respect to the

restricted class of supermodular elaborations. We introduce the relevant definitions as

follows.6

Definition 7. An action distribution µ ∈ ∆(A) is (resp. weakly) strictly robust to super-

modular elaborations in g if for every δ > 0, there exist ε > 0 and η > 0 such that every

supermodular (resp. strong) (ε, η)-elaboration of g has an equilibrium action distribution

ν such that maxa∈A |ν(a)− µ(a)| ≤ δ.

Definition 8. A set of action distributions M ⊂ ∆(A) is (resp. weakly) strictly robust

to supermodular elaborations in g if it is closed, and for every δ > 0, there exist ε > 0

and η > 0 such that every supermodular (resp. strong) (ε, η)-elaboration of g has an

equilibrium action distribution ν such that maxa∈A |ν(a)− µ(a)| ≤ δ for some µ ∈ M .

By definition, if an action distribution µ is (weakly) strictly robust to supermodular

elaborations, then so is the singleton set {µ}, and vice versa. It is immediate that the

set of all correlated equilibria of g is strictly robust (and hence weakly strictly robust) to

supermodular (in fact, all) elaborations. Also, it is clear that any (resp. weakly) strictly

robust set to supermodular elaborations must include LFI (g) (resp. L̂FI (g)).

The next proposition, first, shows that LFI (g) (resp. L̂FI (g)) is indeed a (resp. weakly)

strictly robust set to supermodular elaborations, hence a smallest such set. Second,

LFI (g) and L̂FI (g) share the same largest and smallest elements (with respect to the

first-order stochastic dominance order on ∆(A)), which are degenerate distributions.7

Proposition 2. For any supermodular game g, the following hold:

6The set-valued version of KM-robustness was studied by Morris and Ui (2005).
7For µ, ν ∈ ∆(A), µ first-order stochastically dominates ν if µ(B) ≤ ν(B) for all lower sets B ⊂ A

(i.e., sets B such that a′ ∈ B, whenever a ∈ B and a′ ≤ a).
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(1) LFI (g) (resp. L̂FI (g)) is the smallest (resp. weakly) strictly robust set to supermod-

ular elaborations in g.

(2) There exist action profiles a, a ∈ A such that the degenerate action distribution on a

(resp. a) is the largest (resp. smallest) element of both LFI (g) and L̂FI (g).

Applied to the case when these sets collapse to a singleton, this proposition immediately

implies the following:

Theorem 2. For any supermodular game g and any action distribution µ ∈ ∆(A), the

following conditions are equivalent:

(1) µ is strictly robust to supermodular elaborations in g.

(2) µ is weakly strictly robust to supermodular elaborations in g.

(3) {µ} = L̂FI (g).

(4) {µ} = LFI (g).

In this case, µ is degenerate on some pure action profile.

The proof of Proposition 2, given in Appendix A.2, proceeds as follows. For part

(1), suppose that, for sufficiently small ε, η > 0, a supermodular (resp. strong) (ε, η)-

elaboration of a supermodular game g is given. Then to the type-agent representation H

of a finite-type approximation of U , apply the construction of Oury and Tercieux (2007),

to obtain an elaboration V of H that fully implements an action distribution close to

some equilibrium action distribution of U . (Here, finite approximation is necessary since

the construction of Oury and Tercieux (2007) applies only to supermodular games with

finitely many players.) Viewed as an elaboration of g, V is in fact a supermodular (resp.

strong) (2ε, 2η)-elaboration of g, and hence, it follows that U has an equilibrium action

distribution within a neighborhood of LFI (g) (resp. L̂FI (g)).

For part (2) of Proposition 2, take any µ, µ′ ∈ LFI (g), and for sufficiently small

ε, η > 0, let U and U ′ be supermodular (ε, η)-elaborations of g that fully implement

action distributions ν and ν ′ close to µ and µ′, respectively. Then from U and U ′, we

construct a supermodular strong (2ε, Cη)-elaboration V (for some constant C > 0) such

that every equilibrium action distribution of V first-order stochastically dominates both

ν and ν ′; at least one such distribution lies in a neighborhood of L̂FI (g) by part (1). By

compactness, as ε, η → 0 this implies that LFI (g) has a largest element in L̂FI (g); since

L̂FI (g) ⊂ LFI (g), the two sets share the same largest element. Moreover, if µ ∈ LFI (g)

is not degenerate on a pure action distribution, applying the above construction with
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µ = µ′ yields some element in L̂FI (g) that strictly dominates µ, which implies that the

(common) largest element must be degenerate. (A symmetric argument applies to the

smallest element.)

Finally, for BAS games g, by Proposition 1, the smallest strictly robust set to super-

modular elaborations and the weakly strictly robust set to supermodular elaborations

coincide, equal to the convex polytope SO1(g) ∩ SO0(g). By Theorem 1, the condition

that µ ∈ ∆(A) is (weakly) strictly robust to supermodular elaborations in g is equiv-

alent to the conditions thereof; in particular, (weak) strict robustness to supermodular

elaborations is equivalent to that to all elaborations. It remains as an open problem to

determine whether these properties extend to many-action supermodular games.

Appendix

A.1. Proof Proposition 1. Let g be a BAS game, where we denote Ai = {0, 1}. It

remains to show that SO1(g) ∩ SO0(g) ⊂ L̂FI (g). Let µ ∈ SO1(g) ∩ SO0(g), i.e., there

exist ρ+, ρ− ∈ ∆(Γ) such that∑
γ∈Γi

ρ+(γ)(gi(1, a
1
−i(γ))− gi(0, a

1
−i(γ))) ≥ 0,

∑
γ∈Γi

ρ−(γ)(gi(0, a
0
−i(γ))− gi(1, a

0
−i(γ))) ≥ 0

for all i ∈ I, and µ(a) = ρ+({γ ∈ Γ | a1(γ) = a}) = ρ−({γ ∈ Γ | a0(γ) = a}) for all

a ∈ A.8 Let ε > 0 and η > 0 be given. By modifying the construction in Morris et al.

(2024, Appendix B.1), we show that there exists a supermodular strong (ε, η)-elaboration

of g that has a unique Bayes-Nash equilibrium, which induces µ.

Let ζ > 0 be sufficiently small that (1− ζ)|I|−1 ≥ 1− ε, and∑
γ∈Γi

(1− ζ)|I|−n1(a1−i(γ))−1ρ+(γ)(gi(1, a
1
−i(γ))− gi(0, a

1
−i(γ)) + η) > 0,

for all i ∈ I such that ρ+(Γi) > 0 and∑
γ∈Γi

(1− ζ)|I|−n0(a0−i(γ))−1ρ−(γ)(gi(0, a
0
−i(γ))− gi(1, a

0
−i(γ)) + η) > 0

8Γ denotes the set of all sequences of distinct players, and for i ∈ I, Γi denotes the set of all sequences
in Γ where player i is listed; and for γ ∈ Γ and h = 0, 1, ah(γ) ∈ A denotes the action profile such that
player i plays action h if and only if i is listed in γ, and for i ∈ I, ah−i(γ) ∈ A−i denotes the action profile

of player i’s opponents such that player j ̸= i plays action h if and only if j is listed in γ before i.
9



for all i ∈ I such that ρ−(Γi) > 0, where nh(ah−i(γ)), h = 0, 1, denotes the number of

players playing action h in the action profile ah−i(γ). Then construct the elaboration

(T, P,u) of g as follows:

• the type space of each i ∈ I is

Ti = {(si, ai) ∈ {1, 2, . . .} × Ai | µ({ai} × A−i) > 0},

• the prior distribution P ∈ ∆(T ) is given by

P (t) =



ζ(1− ζ)m
ρ+(γ+)ρ−(γ−)

µ(a)
if µ(a) > 0, and there exist m ∈ N,
γ+ ∈ Π(S(a)), and γ− ∈ Π(I\S(a))
such that si = m + ℓ(i, γ+) for all

i ∈ S(a) and si = m + ℓ(i, γ−) for

all i ∈ I \ S(a),9

0 otherwise

for t = (si, ai)i∈I ∈ T , where S(a) = {i ∈ I | ai = 1}, for S ⊂ I, Π(S) ⊂ Γ denotes

the set of permutations of the players in S ⊂ I, and for i ∈ I and γ = (i1, . . . , ik) ∈ Γ,

ℓ(i, γ) = ℓ if i = iℓ, and

• the payoff function ui : A× T → R of each i ∈ I is given by

ui(a, t) =



gi(a) + η if si ≥ |I| and ai = a′i,

gi(a) if si ≥ |I| and ai ̸= a′i,

1 if si ≤ |I| − 1 and ai = a′i,

0 if si ≤ |I| − 1 and ai ̸= a′i

for a = (aj)j∈I ∈ A and t = (sj, a
′
j)j∈I ∈ T .

This is a supermodular strong (ε, η)-elaboration of g: ti = (si, ai) ∈ T̂ gi,η
i if si ≥ |I|, and

thus we have P (T̂ g,η) ≥
∑∞

m=|I|−1 ζ(1− ζ)m = (1− ζ)|I|−1 ≥ 1− ε.

Then a similar argument as in the proof of Theorem B.1(2) in Morris et al. (2024)

shows that action 1 (resp. 0) is uniquely rationalizable for all players of types ti = (si, ai)

with ai = 1 (resp. ai = 0). By construction, the unique rationalizable strategy profile,

hence the unique Bayes-Nash equilibrium, induces µ, as desired.

A.2. Proof of Proposition 2. In what follows, we let Ai = {0, . . . , |Ai| − 1} for each

i ∈ I.

The following is our key lemma, which generalizes Oury and Tercieux (2007, Theorem 1)

to supermodular elaborations.

9For any t ∈ T , there exists at most one such combination of m, γ+, and γ−.
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Lemma A.1. Let g be any supermodular game. For any δ > 0, ε > 0, and η > 0 and any

supermodular (resp. strong) (ε, η)-elaboration U of g, there exist an equilibrium action

distribution µ of U and a supermodular (resp. strong) (2ε, 2η)-elaboration U ′ of g such that

U ′ has a unique equilibrium action distribution ν, and it satisfies maxa∈A |ν(a)−µ(a)| ≤ δ.

Proof. We prove the statement for strong (ε, η)-elaborations; the proof for (ε, η)-

elaborations is analogous.

Let (I, A,g) be a supermodular game. Fix any δ > 0, ε > 0, and η > 0. Let U =

(I, A, T, P,u) be a supermodular strong (ε, η)-elaboration of (I, A,g), where P (T̂ g,η) ≥

1 − ε. For each i ∈ I, fix an increasing sequence {T (n)
i }∞n=0 of finite subsets of Ti such

that
⋃∞

n=0 T
(n)
i = Ti (where Ti is a countable set by assumption). For each n ≥ 0,

let U (n) = (I, A, T, P,u(n)) be a supermodular elaboration of g where for each i ∈ I,

u
(n)
i : A× T → R is defined by

u
(n)
i (a, t) =


ui(a, t) if ti ∈ T

(n)
i ,

1 if ti /∈ T
(n)
i and ai = 0,

0 if ti /∈ T
(n)
i and ai ̸= 0

for a = (ai)i∈I and t = (ti)i∈I . This is in effect a game with finitely many types ti ∈ T
(n)
i

for each i ∈ I, while the “dummy types” ti /∈ T
(n)
i always play the dominant action

0 ∈ Ai. Let H
(n) = (K(n), B(n),h(n)) be the type-agent representation of U (n), where

• the set of agents is K(n) = {(i, ti) | i ∈ I, ti ∈ T
(n)
i },

• all agents k = (i, ti) ∈ K(n) of player i ∈ I have a common action set B
(n)
k = Ai, where

B(n) =
∏

k∈K(n) B
(n)
k , and

• the payoff function h
(n)
k : B(n) → R of each k = (i, ti) ∈ K(n) is given by

h
(n)
k (b) =

∑
t−i∈T−i

P (t−i|ti)ui((bj,tj)j∈I , (ti, t−i))

for b = (bℓ)ℓ∈K(n) ∈ B(n), where we set bj,tj = 0 if tj /∈ T
(n)
j in the right-hand side.

By the finiteness of T
(n)
i ’s (hence of K(n)) and the supermodularity of u(·, t) for each

t ∈ T , H(n) is a finite supermodular game. Thus we can apply the construction in the

proof of Theorem 1 of Oury and Tercieux (2007) to obtain, for each n ≥ 0, a pure-

action Nash equilibrium b(n) = (b
(n)
k )k∈K(n) ∈ B(n) of H(n) and a (finite) supermodular

elaboration V (n) = (K(n), B(n), (Ω(n))K
(n)
, Q(n),v(n)) of H(n) with a unique Bayes-Nash

equilibrium where

• the set of players is K(n),
11



• the set of actions of each k ∈ K(n) is B
(n)
k ,

• all agents have a common (finite) type space Ω(n), with a prior distribution Q(n) ∈

∆((Ω(n))K
(n)
),

• with some Ω̂(n) ⊂ Ω(n) such that Q(n)((Ω̂(n))K
(n)
) ≥ 1 − ε

2
and some c(n) ∈ R such

that |c(n)|maxi∈I(|Ai| − 1) ≤ η, the payoff function v
(n)
k : B(n) × (Ω(n))K

(n) → R of each

k = (i, ti) ∈ K(n) is given by

v
(n)
k (b, ω) =


h
(n)
k (b) + c(n)bk if ωk ∈ Ω̂(n),

1 if ωk /∈ Ω̂(n) and bk = b
(n)
k ,

0 if ωk /∈ Ω̂(n) and bk ̸= b
(n)
k

for b = (bℓ)ℓ∈K(n) ∈ B(n) and ω = (ωℓ)ℓ∈K(n) ∈ (Ω(n))K
(n)
, and

• in the unique Bayes-Nash equilibrium, each k ∈ K(n) plays the pure action b
(n)
k for all

ωk ∈ Ω(n).

For each n ≥ 0 and each i ∈ I, define the pure strategy σ
(n)
i : Ti → Ai by σ

(n)
i (ti) = b

(n)
i,ti

if ti ∈ T
(n)
i and σ

(n)
i (ti) = 0 if ti /∈ T

(n)
i . By construction, σ(n) = (σ

(n)
i )i∈I is a Bayes-

Nash equilibrium of U (n). Since the set of functions from Ti to Ai is compact in the

product topology, {σ(n)} has a subsequence that converges pointwise to some σ∗, which

is a Bayes-Nash equilibrium of U . Let N ≥ 0 be such that P (T (N)) ≥ 1 − ε
2
, where

T (N) =
∏

i∈I T
(N)
i , and maxa∈A |σ(N)

P (a) − σ∗
P (a)| ≤ δ (where σ

(N)
P and σ∗

P are the action

distributions induced by σ(N) and σ∗, respectively).

We then translate the incomplete information game V (N) =

(K(N), B(N), (Ω(N))K
(N)

, Q(N),v(N)) to an elaboration U ′ = (I, A, T ′, P ′,u′) of (I, A,g)

as follows:

• the type space of each i ∈ I is T ′
i = Ti × Ω(N), where T ′ =

∏
i∈I T

′
i ,

• the prior distribution P ′ ∈ ∆(T ′) is given by

P ′(t′) = P ((ti)i∈I)Q
(N)({(ok)k∈K(N) ∈ (Ω(N))K

(N) | oi,ti = ωi for all i ∈ I})

for t′ = (ti, ωi)i∈I ∈ T ′, and

• the payoff function u′
i : A× T ′ → R of each i ∈ I is given by

u′
i(a, t

′) =


ui(a, (tj)j∈I) + c(N)ai if ti ∈ T

(N)
i and ωi ∈ Ω̂(N),

1 if (ti /∈ T
(N)
i or ωi /∈ Ω̂(N)) and ai = σ

(N)
i (ti),

0 if (ti /∈ T
(N)
i or ωi /∈ Ω̂(N)) and ai ̸= σ

(N)
i (ti)

for a = (aj)j∈I ∈ A and t′ = (tj, ωj)j∈I ∈ T ′.
12



By construction, U ′ is supermodular, and it has the same set of Bayes-Nash equilibria as

V (N), and hence the pure-strategy profile σ′ = (σ′
i)i∈I defined by σ′

i(ti, ωi) = σ
(N)
i (ti) for

all ti ∈ Ti and all ωi ∈ Ω(N) is a unique Bayes-Nash equilibrium of U ′ and induces σ
(N)
P .

Also we have

P ′

(∏
i∈I

((T̂ gi,η
i ∩ T

(N)
i )× Ω̂(N))

)
≥ P

(∏
i∈I

(T̂ gi,η
i ∩ T

(N)
i )

)
Q(N)((Ω̂(N))K

(N)

) ≥ 1− 2ε,

and for any (ti, ωi) ∈ (T̂ gi,η
i ∩ T

(N)
i )× Ω̂(N), we have

max
a∈A

|u′
i(a, (tj, ωj)j∈I)− gi(a)|

≤ max
a∈A

|ui(a, (tj, ωj)j∈I)− gi(a)|+ |c(N)|(|Ai| − 1) ≤ 2η

for all (tj, ωj)j ̸=i ∈ T ′
−i such that P ′((tj, ωj)j ̸=i|ti, ωi) > 0 (hence P (t−i|ti) > 0). Hence,

U ′ is a strong (2ε, 2η)-elaboration of (I, A,g). This completes the proof of Lemma A.1

(with µ = σ∗
P and ν = σ′

P ′). □

Proof of Proposition 2. For an elaboration U , we write E(U) ⊂ ∆(A) for the set of

equilibrium action distributions of an elaboration U . For M ⊂ ∆(A) and δ > 0, write

Bδ(M) = {ν ∈ ∆(A) | maxa∈A |ν(a)− µ(a)| ≤ δ for some µ ∈ M}.

(1) We prove the statement for strict robustness; the proof for weak strict robustness

is analogous. Let g be a supermodular game. For ε > 0 and η > 0, write E∗(ε, η) =

{µ ∈ ∆(A) | {µ} = E(U) for some (ε, η)-elaboration of g}. By definition, LFI (g) =⋂
ε,η>0E

∗(ε, η).

Take any δ > 0. By compactness, we can take ε > 0 and η > 0 such that E∗(2ε, 2η) ⊂

B δ
2
(LFI (g)). Let U be any (ε, η)-elaboration of g. By Lemma A.1, we have B δ

2
(E(U))∩

E∗(2ε, 2η) ̸= ∅. Thus, E(U) ∩Bδ(LFI (g)) ̸= ∅, as desired.

(2) By compactness and the inclusion L̂FI (g) ⊂ LFI (g), the claim for the largest

element follows from Lemma A.2 below; the argument for the smallest element is sym-

metric. □

Below, ≥ denotes the first-order stochastic dominance order on ∆(A) or ∆(Ai), i ∈ I.

Lemma A.2. Let g be any supermodular game.

(i) For any µ, µ′ ∈ LFI (g), there exists µ′′ ∈ L̂FI (g) such that µ′′ ≥ µ and µ′′ ≥ µ′.

(ii) For any µ ∈ LFI (g) that is not degenerate on some pure action profile, there exists

µ′′ ∈ L̂FI (g) such that µ′′ ̸= µ and µ′′ ≥ µ.
13



Proof. (i) Let g be a supermodular game, and let µ, µ′ ∈ LFI (g). Take any δ > 0. By part

(1) of Proposition 2, we can take ε > 0 and η > 0 such that E(V ) ∩ Bδ(L̂FI (g)) ̸= ∅ for

any supermodular strong (2ε, 2maxi∈I(|Ai| − 1)η)-elaboration V of g. Let U = (T, P,u)

and U ′ = (T ′P ′,u′) be supermodular (ε, η)-elaborations of g such that E(U) = {ν},

E(U ′) = {ν ′}, ν ∈ Bδ(µ), and ν ′ ∈ Bδ(µ
′) for some ν and ν ′. Define the elaboration

U ′′ = (T ′′, P ′′,u′′) of g as follows:

• the type space of each i ∈ I is T ′′
i = Ti × T ′

i , where T ′′ =
∏

i∈I T
′′
i ,

• the prior distribution P ′′ ∈ ∆(T ′′) is given by

P ′′(t′′) = P ((ti)i∈I)P
′((t′i)i∈I)

for t′′ = (ti, t
′
i)i∈I ∈ T ′′, and

• the payoff function u′′
i : A× T ′′ → R of each i ∈ I is given by

u′′
i (a, t

′′) =


gi(a) + 2ηai if t′′i ∈ T gi,η

i × T ′gi,η
i ,

1 if t′′i /∈ T gi,η
i × T ′gi,η

i and ai = |Ai| − 1,

0 if t′′i /∈ T gi,η
i × T ′gi,η

i and ai ̸= |Ai| − 1

for a = (aj)j∈I and t′′ = (t′′j )j∈I .

By construction, U ′′ is a supermodular strong (2ε, 2maxi∈I(|Ai| − 1)η)-elaboration of g:

P ′′(T̂ ′′g,2maxi∈I(|Ai|−1)η) ≥ P ′′(
∏

i∈I(T
gi,η
i × T ′gi,η

i )) = P (T g,η)P ′(T ′g,η) ≥ 1− 2ε. Thus, by

the choice of ε and η, U ′′ has an equilibrium action distribution ν ′′ in Bδ(L̂FI (g)).

Let Σi, Σ
′
i, and Σ′′

i denote the sets of player i’s strategies in U , U ′, and U ′′, respec-

tively, with the usual notation Σ =
∏

i∈I Σi, Σ−i =
∏

j ̸=i Σj, etc. Let BRi : Σ−i×Ti → Ai,

BR′
i : Σ

′
−i × T ′

i → Ai, and BR′′
i : Σ

′′
−i × T ′′

i → Ai denote the pure best response correspon-

dences of player i in U , U ′, and U ′′, respectively.

Claim 1. For any i ∈ I and any σ−i ∈ Σ−i, σ
′
−i ∈ Σ′

−i, and σ′′
−i ∈ Σ′′

−i, if σ
′′
−i((tj, t

′
j)j ̸=i) ≥

σ−i(t−i) and σ′′
−i((tj, t

′
j)j ̸=i) ≥ σ′

−i(t
′
−i) for all t−i = (tj)j ̸=i ∈ T−i and t′−i = (t′j)j ̸=i ∈ T ′

−i,

then minBR′′
i (σ

′′
−i)(ti, t

′
i) ≥ minBRi(σ−i)(ti) and minBR′′

i (σ
′′
−i)(ti, t

′
i) ≥ minBR′

i(σ
′
−i)(t

′
i)

for all ti ∈ Ti and t′i ∈ T ′
i .

Proof. We only prove the former inequality. Suppose that σ′′
−i((tj, t

′
j)j ̸=i) ≥ σ−i(t−i) for

all t−i ∈ T−i and t′−i ∈ T ′
−i. It suffices to consider types ti ∈ T gi,η

i and t′i ∈ T ′gi,η
i . Denote

ai = minBRi(σ−i)(ti), and consider any bi < ai. Then we have∑
t−i∈T−i,t′−i∈T ′

−i

P ′′((tj, t
′
j)j ̸=i|ti, t′i)[u′′

i (ai, σ
′′
−i((tj, t

′
j)j ̸=i))− u′′

i (bi, σ
′′
−i((tj, t

′
j)j ̸=i))]
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=
∑

t−i∈T−i,t′−i∈T ′
−i

P (t−i|ti)P ′(t′−i|t′i)

× [gi(ai, σ
′′
−i((tj, t

′
j)j ̸=i))− gi(bi, σ

′′
−i((tj, t

′
j)j ̸=i)) + 2η(ai − bi)]

≥
∑

t−i∈T−i,t′−i∈T ′
−i

P (t−i|ti)P ′(t′−i|t′i)

× [gi(ai, σ−i(t−i))− gi(bi, σ−i(t−i)) + 2η(ai − bi)]

≥
∑

t−i∈T−i

P (t−i|ti)[gi(ai, σ−i(t−i))− gi(bi, σ−i(t−i)) + 2η]

≥
∑

t−i∈T−i

P (t−i|ti)[ui(ai, σ−i(t−i))− ui(bi, σ−i(t−i))] > 0,

where the first inequality holds by supermodularity, and the third inequality holds since

ti ∈ T gi,η
i . Thus, minBR′′

i (σ
′′
−i)(ti, t

′
i) ≥ ai as claimed. □

By Claim 1, every Bayes-Nash equilibrium of U ′′, in particular the Bayes-Nash equi-

librium that induces ν ′′, is weakly larger than both the unique Bayes-Nash equilibria of

U and U ′ which induce ν and ν ′, respectively, which implies that ν ′′(B) ≤ ν(B)ν ′(B) for

all lower sets B ⊂ A.

Finally, let δ → 0. By compactness, we have some µ′′ ∈ L̂FI (g) such that µ′′(B) ≤

µ(B)µ′(B) for all lower sets B ⊂ A, which implies that µ′′ ≥ µ and µ′′ ≥ µ′.

(ii) Let µ ∈ LFI (g), and suppose that µ is not degenerate, so that 0 < µ(B) < 1 for

some lower set B ⊂ A. Then apply the above argument with µ = µ′ to obtain some

µ′′ ∈ L̂FI (g) such that µ′′ ≥ µ, where we have µ′′(B) ≤ µ(B)2 < µ(B), and hence

µ′′ ̸= µ. □
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