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Metric Spaces

Definition 1

For a nonempty set S, a function ρ : S × S → R is a metric or
distance on S if for any x, y, z ∈ S,

0. ρ(x, y) ≥ 0,

1. ρ(x, y) = 0 if and only if x = y,

2. ρ(x, y) = ρ(y, x), and

3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

The pair (S, ρ) is called a metric space.

Often we say that S is a metric space with a metric or distance ρ.
If ρ is understood, we simply say that S is a metric space.

I Condition 0 actually follows from conditions 1–3.
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Normed Vector Spaces

Definition 2

For a nonempty vector space V (over R), a function ‖·‖ : V → R
is a norm on V if for any x, y ∈ V and γ ∈ R,

0. ‖x‖ ≥ 0,

1. ‖x‖ = 0 if and only if x = 0,

2. ‖γx‖ = |γ|‖x‖, and

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The pair (V, ‖·‖) is called a normed vector space or normed space.

Often we say that V is a normed vector space with a norm ‖·‖.
If ‖·‖ is understood, we simply say that V is a normed vector space.

I Condition 0 actually follows from conditions 1–3.
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I Normed spaces are a special case of metric spaces.

Proposition 1 (Exercise 3.1.3)

Let (V, ‖·‖) be a normed vector space, and define the function
ρ : V ×V → R by ρ(x, y) = ‖x−y‖. Then (V, ρ) is a metric space.
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Examples (p-Norm)
I For Rk and p ≥ 1, let ‖·‖p : Rk → R be defined by

‖x‖p =

(
k∑

i=1

|xi|p
)1/p

,

and ‖·‖∞ : Rk → R be defined by

‖x‖∞ = max
i=1,...,k

|xi|.

I For any nonempty set U ,
let bU be the set of all bounded functions f : U → R
(functions such that supx∈U |f(x)| <∞).

This is a vector space with (f + g)(x) = f(x) + g(x) and
(γf)(x) = γf(x).

Let

‖f‖∞ = sup
x∈U
|f(x)|.
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I Let `p be the set of all functions x : N→ R such that

∞∑
i=1

|xi|p <∞.

This is a vector space with x+ y = (x1 + y1, x2 + y2, . . .) and
γx = (γx1, γx2, . . .).

Let

‖x‖p =

( ∞∑
i=1

|xi|p
)1/p

.

I For ` =∞, let `∞ = bN, and ‖x‖∞ = supi∈N|xi|.
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Sequences

I For a nonempty set S, a sequence in S is a function from N
to S.

A sequence is denoted by (xn).

For A ⊂ S, we write (xn) ⊂ A if xn ∈ A for all n ∈ N.

Definition 3

Let (S, ρ) be a metric space.

A sequence (xn) ⊂ S is said to converge to x̄ ∈ S if for any ε > 0,
there exists N ∈ N such that

ρ(xn, x̄) < ε for all n ≥ N.

In this case, we write limn→∞ xn = x̄, or xn → x̄;
and we say that (xn) is convergent.

x̄ is called the limit of (xn).
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Proposition 2 (Theorem 3.1.6)

A sequence in a metric space has at most one limit.

I Let (S, ρ) be a metric space. Let

B(r;x) = {y ∈ S | ρ(y, x) < r}.

I A subset E ⊂ S is bounded if E ⊂ B(n;x) for some x ∈ S
and n ∈ N.

I A sequence (xn) ⊂ S is bounded if {xn ∈ S | n ∈ N} is
bounded.

Proposition 3 (Exercise 3.1.9)

Any convergent sequence in a metric space is bounded.
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Subsequences

Definition 4

For a sequence (xn) ⊂ S, a sequence (yn) ⊂ S is a subsequence of
(xn) if there exists a strictly increasing function f : N→ N such
that yn = xf(n) for all n ∈ N.

We write (xnk
) to denote a subsequence of (xn).

Proposition 4

Let (S, ρ) be a metric space.

For (xn) ⊂ S and x ∈ S,

1. xn → x if and only if every subsequence of (xn) converges to
x;

2. xn → x if and only if every subsequence of (xn) has
a subsequence that converges to x.
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Continuous Functions

Definition 5

Let S and T be metric spaces, and A a nonempty subset of S.

A function f : A→ T is continuous at a ∈ A if
for any (xn) ⊂ A with xn → a, we have f(xn)→ f(a).

f is continuous on B ⊂ A if f is continuous at all a ∈ B.

f is continuous if it is continuous on A.

Proposition 5 (Example 3.1.12)

Let (S, ρ) is a metric space, and let x̄ be any point in S.

Then the function ρ(·, x̄) : S 3 x 7→ ρ(x, x̄) ∈ R is continuous.
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