Approximating Common Knowledge with Common Beliefs Daisuke Oyama Topics in Economic Theory September 25, 2015 # **Papers** - Monderer, D. and D. Samet (1989). "Approximating Common Knowledge with Common Beliefs," Games and Economic Behavior 1, 170-190. - ► Kajii, A. and S. Morris (1997b). "Refinements and Higher Order Beliefs: A Unified Survey." # Type Spaces - ▶ Type space $\mathcal{T} = (T_i, \pi_i)_{i=1}^I$: - $ightharpoonup T_i$: set of *i*'s types (countable) - \bullet $\pi_i \colon T_i \to \Delta(T_{-i}) \colon i$'s belief - $T = \prod_{i=1}^{I} T_i, T_{-i} = \prod_{j \neq i} T_j$ - ▶ If there is a common prior $P \in \Delta(T)$ with $P(t_i) = P(\{t_i\} \times T_{-i}) > 0$ for all i and t_i , $$\pi_i(t_i)(E_{-i}) = \frac{P(\{t_i\} \times E_{-i})}{P(t_i)}$$ for $E_{-i} \subset T_{-i}$. ▶ An event $E \subset T$ is simple if $E = \prod_{i=1}^I E_i$ for some $E_i \subset T_i$, $i=1,\ldots,I$. Let $\mathcal{S} \subset 2^T$ denote the set of simple events. # *p*-Belief Operator $$B_i^p\colon \mathcal{S}\to 2^{T_i}\colon$$ $$B_i^p(E)=\{t_i\in T_i\mid t_i\in E_i \text{ and } \pi_i(t_i)(E_{-i})\geq p\}.$$ ## Proposition 1 - 1. $B_i^p(E) \subset E_i$. - 2. If $E \subset F$, then $B_i^p(E) \subset B_i^p(F)$. - 3. If $E^0\supset E^1\supset \cdots$, then $B_i^p(\bigcap_{k=0}^\infty E^k)=\bigcap_{k=0}^\infty B_i^p(E^k)$. - (3. If $E^0\supset E^1\supset\cdots$, then $\pi_i(t_i)(\bigcap_{k=0}^\infty E^k_{-i})=\lim_{k\to\infty}\pi_i(t_i)(E^k_{-i})$.) # Common p-Belief (Iteration) $\qquad \qquad \mathbf{For} \ \mathbf{p} \in [0,1]^I,$ $$B_*^{\mathbf{p}}(E) = \prod_{i=1}^I B_i^{p_i}(E),$$ $$C^{\mathbf{p}}(E) = \bigcap_{k=1}^\infty (B_*^{\mathbf{p}})^k(E).$$ #### Definition 1 $E \in \mathcal{S}$ is common p-belief at $t \in T$ if $t \in C^{\mathbf{p}}(E)$. # Common p-Belief (Fixed Point) #### Definition 2 $E \in \mathcal{S}$ is **p**-evident if $$E \subset B^{\mathbf{p}}_{*}(E)$$. (Equivalent to the condition with " $E = B_*^{\mathbf{p}}(E)$ ".) #### **Definition 3** $E \in \mathcal{S}$ is common **p**-belief at $t \in T$ if there exists a **p**-evident event F such that $$t \in F \subset B^{\mathbf{p}}_{*}(E)$$. (Equivalent to the condition with " $t \in F \subset E$ ".) ## Equivalence ## Proposition 2 $$C^{\mathbf{p}}(E)$$ is **p**-evident, i.e., $C^{\mathbf{p}}(E) \subset B_*^{\mathbf{p}}(C^{\mathbf{p}}(E))$. #### Proof. $$C^{\mathbf{p}}(E) = \bigcap_{k=1}^{\infty} B_*^{\mathbf{p}}((B_*^{\mathbf{p}})^{k-1}(E)) = B_*^{\mathbf{p}}(\bigcap_{k=1}^{\infty} (B_*^{\mathbf{p}})^{k-1}(E)).$$ ## Proposition 3 $C^{\mathbf{p}}(E)$ is the largest \mathbf{p} -evident event in E, i.e., if $F \subset E$ and $F \subset B^{\mathbf{p}}_*(F)$, then $F \subset C^{\mathbf{p}}(E)$. #### Proof. First, $F \subset B_*^{\mathbf{p}}(F) \subset B_*^{\mathbf{p}}(E)$. Suppose $F \subset (B_*^{\mathbf{p}})^n(E)$. Then $F \subset B_*^{\mathbf{p}}(F) \subset B_*^{\mathbf{p}}((B_*^{\mathbf{p}})^n(E)) = (B_*^{\mathbf{p}})^{n+1}(E)$. # Equivalence #### Proposition 4 The two definitions are equivalent, i.e., $$t \in C^{\mathbf{p}}(E) \iff \exists F : F \subset B^{\mathbf{p}}_*(F) \text{ and } t \in F \subset B^{\mathbf{p}}_*(E).$$ #### Proof. - ► "Only if": - $C^{\mathbf{p}}(E)$ is **p**-evident by Proposition 2, and $C^{\mathbf{p}}(E) \subset B_*^{\mathbf{p}}(C^{\mathbf{p}}(E))$. - "If": - $F \subset C^{\mathbf{p}}(E)$ by Proposition 3. # Example: Email Game - $T_1 = T_2 = \{0, 1, 2, \ldots \}$ - \bullet $\pi_1 \colon T_1 \to \Delta(T_2) \colon$ $$\pi_1(t_2|t_1) = \begin{cases} 1 & \text{if } t_1 = 0, \ t_2 = 0 \\ \frac{1}{2-\varepsilon} & \text{if } t_1 \ge 1, \ t_2 = t_1 - 1 \\ \frac{1-\varepsilon}{2-\varepsilon} & \text{if } t_1 \ge 1, \ t_2 = t_1 \\ 0 & \text{otherwise} \end{cases}$$ $$\pi_2 \colon T_2 \to \Delta(T_1)$$: $$\pi_2(t_1|t_2) = \begin{cases} \frac{1}{2-\varepsilon} & \text{if } t_2 = 0, \, t_1 = 0 \\ \frac{1}{2-\varepsilon} & \text{if } t_2 \geq 1, \, t_1 = t_2 \\ \frac{1-\varepsilon}{2-\varepsilon} & \text{if } t_2 \geq 0, \, t_1 = t_2 + 1 \\ 0 & \text{otherwise} \end{cases}$$ ▶ Let $E_1 = T_1 \setminus \{0\}$ and $E_2 = T_2$, and $p_i \ge \frac{1}{2}$. ## Connection to Games 1 - ▶ Type space $\mathcal{T} = (T_i, \pi_i)_{i=1}^I$ - ▶ Players 1, ..., I - ▶ Binary actions $A_i = \{0, 1\}$ - ▶ $F \in \mathcal{S}$ is identified with the (pure) strategy profile σ such that $\sigma_i(t_i) = 1$ if and only if $t_i \in F_i$. - ▶ Fix $E \in \mathcal{S}$. - Incomplete information game up: If $$t_i \in E_i$$: for all t_{-i} with $\pi_i(t_i)(t_{-i}) > 0$, $$u_i^{p_i}(1,a_{-i},t_i,t_{-i}) = \begin{cases} 1-p_i & \text{if } a_{-i} = \mathbf{1}_{-i},\\ -p_i & \text{otherwise}, \end{cases}$$ $$u_i^{p_i}(0,a_{-i},t_i,t_{-i}) = 0.$$ If $t_i \notin E_i$: 0 is a dominant action. - ▶ $B_i^{p_i}(E_i \times F_{-i})$ is the (largest) best response to F_{-i} (play 1 if indifferent). - ▶ $1 \in R_i(t_i)$ if and only if $t_i \in C_i^{\mathbf{p}}(E)$. - ▶ F is an equilibrium if and only if $F \subset E$ and F is p-evident. - $ightharpoonup C^{\mathbf{p}}(E)$ is the largest equilibrium. #### Connection to Games 2 - ▶ Players 1, ..., I - ► Actions *A_i* (finite) - ▶ Complete information game $\mathbf{g}, g_i : A \to \mathbb{R}$ - $a^* \in A$ is a **p**-dominant equilibrium of **g** if $$a_i^* \in br_i(\lambda_i)$$ for any $\lambda_i \in \Delta(A_{-i})$ such that $\lambda_i(a_{-i}^*) \geq p_i$. - ▶ Incomplete information game $\mathbf{u}_i : A \times T \to \mathbb{R}$ - ▶ Let $$T_i^{g_i} = \{ t_i \in T_i \mid u_i(a, t_i, t_{-i}) = g_i(a) \text{ for all } a \in A \text{ and}$$ for all $t_{-i} \in T_{-i} \text{ with } \pi_i(t_i)(t_{-i}) > 0 \},$ and $$T^{\mathbf{g}} = \prod_{i=1}^{I} T_i^{g_i}$$. #### Lemma 5 Suppose that a^* is a **p**-dominant equilibrium of **g**. Then **u** has an equilibrium σ such that $\sigma(t)(a^*)=1$ for all $t\in C^{\mathbf{p}}(T^{\mathbf{g}})$. #### Proof - For each i, let $F_i = B_i^{p_i}(C^{\mathbf{p}}(T^{\mathbf{g}}))$ ($\subset T_i^{g_i}$). Then $C^{\mathbf{p}}(T^{\mathbf{g}}) \subset F$ (in fact $C^{\mathbf{p}}(T^{\mathbf{g}}) = F$). - ▶ Consider the modified game \mathbf{u}' where each player i must play a_i^* if $t_i \in F_i$. Let σ^* be any equilibrium of \mathbf{u}' . We want to show that σ^* is also an equilibrium of \mathbf{u} . - ▶ For $t_i \in T_i \setminus F_i$, $\sigma_i^*(t_i)$ is a best response to σ_{-i}^* by construction. - ▶ Suppose $t_i \in F_i$. Then by definition, $\pi_i(t_i)(C^\mathbf{p}(T^\mathbf{g})) \geq p_i$, and hence i assigns probability at least p_i to the others playing a_{-i}^* . Therefore, $\sigma_i^*(t_i) = a_i^*$ is a best response to σ_{-i}^* . ## Proposition 6 Suppose that a^* is a strict equilibrium of g. For any $\delta>0$, there exists $\varepsilon>0$ such that for any $P\in\Delta(T)$ such that $P(C^{\mathbf{p}}(T^{\mathbf{g}}))\geq 1-\varepsilon$ for all $\mathbf{p}\ll\mathbf{1}$, there exists an equilibrium σ of (T,P,\mathbf{u}) such that $P(\{t\in T\mid \sigma(t)(a^*)=1\})\geq 1-\delta$. - ▶ A strict equilibrium is **p**-dominant for some $\mathbf{p} \ll 1$. - ▶ The proposition holds even with non common priors P_i .