Approximating Common Knowledge with Common Beliefs

Daisuke Oyama

Topics in Economic Theory

September 25, 2015

Papers

- Monderer, D. and D. Samet (1989). "Approximating Common Knowledge with Common Beliefs," Games and Economic Behavior 1, 170-190.
- ► Kajii, A. and S. Morris (1997b). "Refinements and Higher Order Beliefs: A Unified Survey."

Type Spaces

- ▶ Type space $\mathcal{T} = (T_i, \pi_i)_{i=1}^I$:
 - $ightharpoonup T_i$: set of *i*'s types (countable)
 - \bullet $\pi_i \colon T_i \to \Delta(T_{-i}) \colon i$'s belief
- $T = \prod_{i=1}^{I} T_i, T_{-i} = \prod_{j \neq i} T_j$
- ▶ If there is a common prior $P \in \Delta(T)$ with $P(t_i) = P(\{t_i\} \times T_{-i}) > 0$ for all i and t_i ,

$$\pi_i(t_i)(E_{-i}) = \frac{P(\{t_i\} \times E_{-i})}{P(t_i)}$$

for $E_{-i} \subset T_{-i}$.

▶ An event $E \subset T$ is simple if $E = \prod_{i=1}^I E_i$ for some $E_i \subset T_i$, $i=1,\ldots,I$.

Let $\mathcal{S} \subset 2^T$ denote the set of simple events.

p-Belief Operator

$$B_i^p\colon \mathcal{S}\to 2^{T_i}\colon$$

$$B_i^p(E)=\{t_i\in T_i\mid t_i\in E_i \text{ and } \pi_i(t_i)(E_{-i})\geq p\}.$$

Proposition 1

- 1. $B_i^p(E) \subset E_i$.
- 2. If $E \subset F$, then $B_i^p(E) \subset B_i^p(F)$.
- 3. If $E^0\supset E^1\supset \cdots$, then $B_i^p(\bigcap_{k=0}^\infty E^k)=\bigcap_{k=0}^\infty B_i^p(E^k)$.
- (3. If $E^0\supset E^1\supset\cdots$, then $\pi_i(t_i)(\bigcap_{k=0}^\infty E^k_{-i})=\lim_{k\to\infty}\pi_i(t_i)(E^k_{-i})$.)

Common p-Belief (Iteration)

 $\qquad \qquad \mathbf{For} \ \mathbf{p} \in [0,1]^I,$

$$B_*^{\mathbf{p}}(E) = \prod_{i=1}^I B_i^{p_i}(E),$$

$$C^{\mathbf{p}}(E) = \bigcap_{k=1}^\infty (B_*^{\mathbf{p}})^k(E).$$

Definition 1

 $E \in \mathcal{S}$ is common p-belief at $t \in T$ if $t \in C^{\mathbf{p}}(E)$.

Common p-Belief (Fixed Point)

Definition 2

 $E \in \mathcal{S}$ is **p**-evident if

$$E \subset B^{\mathbf{p}}_{*}(E)$$
.

(Equivalent to the condition with " $E = B_*^{\mathbf{p}}(E)$ ".)

Definition 3

 $E \in \mathcal{S}$ is common **p**-belief at $t \in T$ if there exists a **p**-evident event F such that

$$t \in F \subset B^{\mathbf{p}}_{*}(E)$$
.

(Equivalent to the condition with " $t \in F \subset E$ ".)

Equivalence

Proposition 2

$$C^{\mathbf{p}}(E)$$
 is **p**-evident, i.e., $C^{\mathbf{p}}(E) \subset B_*^{\mathbf{p}}(C^{\mathbf{p}}(E))$.

Proof.

$$C^{\mathbf{p}}(E) = \bigcap_{k=1}^{\infty} B_*^{\mathbf{p}}((B_*^{\mathbf{p}})^{k-1}(E)) = B_*^{\mathbf{p}}(\bigcap_{k=1}^{\infty} (B_*^{\mathbf{p}})^{k-1}(E)).$$

Proposition 3

 $C^{\mathbf{p}}(E)$ is the largest \mathbf{p} -evident event in E, i.e., if $F \subset E$ and $F \subset B^{\mathbf{p}}_*(F)$, then $F \subset C^{\mathbf{p}}(E)$.

Proof.

First, $F \subset B_*^{\mathbf{p}}(F) \subset B_*^{\mathbf{p}}(E)$.

Suppose $F \subset (B_*^{\mathbf{p}})^n(E)$. Then $F \subset B_*^{\mathbf{p}}(F) \subset B_*^{\mathbf{p}}((B_*^{\mathbf{p}})^n(E)) = (B_*^{\mathbf{p}})^{n+1}(E)$.

Equivalence

Proposition 4

The two definitions are equivalent, i.e.,

$$t \in C^{\mathbf{p}}(E) \iff \exists F : F \subset B^{\mathbf{p}}_*(F) \text{ and } t \in F \subset B^{\mathbf{p}}_*(E).$$

Proof.

- ► "Only if":
 - $C^{\mathbf{p}}(E)$ is **p**-evident by Proposition 2, and $C^{\mathbf{p}}(E) \subset B_*^{\mathbf{p}}(C^{\mathbf{p}}(E))$.
- "If":
 - $F \subset C^{\mathbf{p}}(E)$ by Proposition 3.

Example: Email Game

- $T_1 = T_2 = \{0, 1, 2, \ldots \}$
- \bullet $\pi_1 \colon T_1 \to \Delta(T_2) \colon$

$$\pi_1(t_2|t_1) = \begin{cases} 1 & \text{if } t_1 = 0, \ t_2 = 0 \\ \frac{1}{2-\varepsilon} & \text{if } t_1 \ge 1, \ t_2 = t_1 - 1 \\ \frac{1-\varepsilon}{2-\varepsilon} & \text{if } t_1 \ge 1, \ t_2 = t_1 \\ 0 & \text{otherwise} \end{cases}$$

$$\pi_2 \colon T_2 \to \Delta(T_1)$$
:

$$\pi_2(t_1|t_2) = \begin{cases} \frac{1}{2-\varepsilon} & \text{if } t_2 = 0, \, t_1 = 0 \\ \frac{1}{2-\varepsilon} & \text{if } t_2 \geq 1, \, t_1 = t_2 \\ \frac{1-\varepsilon}{2-\varepsilon} & \text{if } t_2 \geq 0, \, t_1 = t_2 + 1 \\ 0 & \text{otherwise} \end{cases}$$

▶ Let $E_1 = T_1 \setminus \{0\}$ and $E_2 = T_2$, and $p_i \ge \frac{1}{2}$.

Connection to Games 1

- ▶ Type space $\mathcal{T} = (T_i, \pi_i)_{i=1}^I$
- ▶ Players 1, ..., I
- ▶ Binary actions $A_i = \{0, 1\}$
- ▶ $F \in \mathcal{S}$ is identified with the (pure) strategy profile σ such that $\sigma_i(t_i) = 1$ if and only if $t_i \in F_i$.
- ▶ Fix $E \in \mathcal{S}$.
- Incomplete information game up:

If
$$t_i \in E_i$$
: for all t_{-i} with $\pi_i(t_i)(t_{-i}) > 0$,
$$u_i^{p_i}(1,a_{-i},t_i,t_{-i}) = \begin{cases} 1-p_i & \text{if } a_{-i} = \mathbf{1}_{-i},\\ -p_i & \text{otherwise}, \end{cases}$$

$$u_i^{p_i}(0,a_{-i},t_i,t_{-i}) = 0.$$

If $t_i \notin E_i$: 0 is a dominant action.

- ▶ $B_i^{p_i}(E_i \times F_{-i})$ is the (largest) best response to F_{-i} (play 1 if indifferent).
- ▶ $1 \in R_i(t_i)$ if and only if $t_i \in C_i^{\mathbf{p}}(E)$.
- ▶ F is an equilibrium if and only if $F \subset E$ and F is p-evident.
- $ightharpoonup C^{\mathbf{p}}(E)$ is the largest equilibrium.

Connection to Games 2

- ▶ Players 1, ..., I
- ► Actions *A_i* (finite)
- ▶ Complete information game $\mathbf{g}, g_i : A \to \mathbb{R}$
- $a^* \in A$ is a **p**-dominant equilibrium of **g** if

$$a_i^* \in br_i(\lambda_i)$$

for any $\lambda_i \in \Delta(A_{-i})$ such that $\lambda_i(a_{-i}^*) \geq p_i$.

- ▶ Incomplete information game $\mathbf{u}_i : A \times T \to \mathbb{R}$
- ▶ Let

$$T_i^{g_i} = \{ t_i \in T_i \mid u_i(a, t_i, t_{-i}) = g_i(a) \text{ for all } a \in A \text{ and}$$
 for all $t_{-i} \in T_{-i} \text{ with } \pi_i(t_i)(t_{-i}) > 0 \},$

and
$$T^{\mathbf{g}} = \prod_{i=1}^{I} T_i^{g_i}$$
.

Lemma 5

Suppose that a^* is a **p**-dominant equilibrium of **g**. Then **u** has an equilibrium σ such that $\sigma(t)(a^*)=1$ for all $t\in C^{\mathbf{p}}(T^{\mathbf{g}})$.

Proof

- For each i, let $F_i = B_i^{p_i}(C^{\mathbf{p}}(T^{\mathbf{g}}))$ ($\subset T_i^{g_i}$). Then $C^{\mathbf{p}}(T^{\mathbf{g}}) \subset F$ (in fact $C^{\mathbf{p}}(T^{\mathbf{g}}) = F$).
- ▶ Consider the modified game \mathbf{u}' where each player i must play a_i^* if $t_i \in F_i$.

Let σ^* be any equilibrium of \mathbf{u}' .

We want to show that σ^* is also an equilibrium of \mathbf{u} .

- ▶ For $t_i \in T_i \setminus F_i$, $\sigma_i^*(t_i)$ is a best response to σ_{-i}^* by construction.
- ▶ Suppose $t_i \in F_i$.

Then by definition, $\pi_i(t_i)(C^\mathbf{p}(T^\mathbf{g})) \geq p_i$, and hence i assigns probability at least p_i to the others playing a_{-i}^* .

Therefore, $\sigma_i^*(t_i) = a_i^*$ is a best response to σ_{-i}^* .

Proposition 6

Suppose that a^* is a strict equilibrium of g.

For any $\delta>0$, there exists $\varepsilon>0$ such that for any $P\in\Delta(T)$ such that $P(C^{\mathbf{p}}(T^{\mathbf{g}}))\geq 1-\varepsilon$ for all $\mathbf{p}\ll\mathbf{1}$, there exists an equilibrium σ of (T,P,\mathbf{u}) such that $P(\{t\in T\mid \sigma(t)(a^*)=1\})\geq 1-\delta$.

- ▶ A strict equilibrium is **p**-dominant for some $\mathbf{p} \ll 1$.
- ▶ The proposition holds even with non common priors P_i .