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Introduction

» A game is played on a large network.

Players interact with their neighbors.

» Changes in actions of a small set of players can have large
impacts through contagion.

» When does contagion occur?
Which action?
In what kind of network?
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Introduction

In this paper, we conduct the following exercise:

» Fix a two-player game.

Analyze long-run behavior of best response dynamics
played on various networks.

» Key phenomena are:

> contagion

» uninvadability: no other action is contagious in any network

» Understand how the payoff structure affects
contagion /uninvadability.
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Introduction

... And also the following “reverse” exercise:

» Understand how the network structure (network topology)
affects contagion.

» More specifically:
Fix a network and a parameterized class of games, and
find the parameter range in which contagion occurs.

» Networks are classified by these parameter ranges.

E.g., a network is more contagion-inducing than another.
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Introduction

We consider the bilingual game,
a 3 x 3 game obtained by adding a bilingual option
to a 2 x 2 coordination game.

» May be of interest itself.

» Refine the analysis by Morris (2000) based on 2 x 2 games:

Weakly (indeed strictly, in some cases) more detailed analysis
of network topologies.

» Simple enough to obtain a full characterization of
contagion /uninvadability.
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Literature

This game has been studied by

[1] Goyal and Janssen (1997)

Consider a circle (circular network).

[2] Immorlica, Kleinberg, Mahdian, and Wexler (2007)
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risk-dominance coincide.

[3] Easley and Kleinberg (2010)
Networks, Crowds, and Markets: Reasoning about a Highly
Connected World
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Plan of the Talk

v

Definition of contagion and uninvadability

v

Review: 2 x 2 Coordination Games

v

Bilingual Game—A 3 x 3 Game

v

“Reverse Exercise”: Comparison of Networks

v

(Implications in Incomplete Information Games)
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A Network

» X: a countably infinite set of nodes

> P: X x X — Ry, interaction weights

v

v

v

v

z,x) =0
x,y) :P(y7x)

dwy Pla,y) =00
0<>, Pla,y) <oo

For example,

-2 -1 0 1

[\

[ J9N

» X =7, P(m,y):{

Figure: Simple linear network

1 iflz—yl=1,
0 otherwise .
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A Game on a Network

> u: A X A— R: a symmetric two-player game
» 0: X — A: an action configuration

> Player x chooses a to maximize

> ula,o(y)P(z,y) o Y ula,o(y))Plyle)

Y Y

» P(ylz) = %: normalized weight
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Sequential Best Response Dynamics

(0!)°,: a best response sequence

» For each ¢, there exists at most one x, denoted by z!, such
that of () # o'~ 1(a?).
» ol(x!) is a best response against o' 1.

> If limy oo 0l () = 3,
then for all T > 0, s € BR(c'|x) for some t > T.

Most of our results go through with simultaneous best responses.
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Contagion /Uninvadability in Network Games

» a* is contagious in network (X, P) if:
there exists a finite set of players s.t.
if this set of players initially plays action a*,
then the whole population will eventually play a*
in any best response sequence.

» a* is contagious if it is contagious in some network.

» a* is uninvadable if:

for all networks,

if a* is played by almost all players,

then it continues to be played by almost all players
in any best response sequence.
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Review: 2 x 2 Coordination Games

A B
u= A|111] 0
Bl 3 |10

» Both A and B: Nash equilibria

» A: Pareto-dominant

» B: risk-dominant

» B is the best response against the opponent’s mixed action
A+ iB.
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Contagion and Uninvadability in 2 x 2 Games

» The risk-dominant action B is contagious.

(Demonstrated by many papers.)

» B is also uninvadable. (Morris 2000)

» The risk-dominated action A cannot be contagious.
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The Proof of Contagion

-3 -2 -1 0 1

N
o o

Figure: Simple linear network

» B spreads contagiously from two consecutive nodes.
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The Proof of Uninvadability

The proof is based on potential /Lyapunov functions.

> Replace payoff function u by its potential v

u= A
B

> v is symmetric, and satisfies

In particular, v and v are best response equivalent:
incentives to choose A or B is the same between u and v.

A B
1110
3 |10

» v is maximized at (B, B).

A B
11| 3
3 |13

v(a,b) —v(a’,b) = u(a,b) — u(a’,b)
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v

v

v

Define the Lyapunov function by
1
Vie) =5 Y Play)[v(o(x),0(y) - 13]

z,yeX

In general, —oo < V(o) <0

Suppose that “almost all” players play B in period 0.

More formally, the initial weight on non-(B, B) pairs is finite:

1
3 Z P(z,y) < o0
(0%(2),0°(y))#(B,B)

16
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» Recall that only 2! € X’ changes action in period t.
V(") = V('™
1 _ _
=3 > Pt y)(v(o'(a"),0'(y)) — v(a" " (2"),0" 1 (y)))

yeX
13 Pl (vl ().0' () — vlo ). 0" (0"))
yeX
=) Pt y)(w(o'(zh), o'(y) ) —v(c"(z"),0" ()
y;( y ') y

=ot=1(y)

> 0.

» V(ie) > V(o) > > V(00 > —o0.
» The weight on non-(B, B) pairs is bounded from above.

» Thus B is uninvadable.
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Reverse Exercise: Contagion Thresholds

We quantify the “power” of a network

A B

>’U/p:z‘l 1 0

Bll—p|1l-—p

» Contagion threshold of (X, P):

&(X,P) :=sup{p: B is contagious in (X, P) for u,}

18 /46



-3 -2 -1 0 1
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Figure: Simple linear network

» The contagion threshold of the simple linear network is 1/2.
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0
100
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! 110
1 111
Figure: “Tree”

» The contagion threshold of the tree is 1/3.
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—2 -1 0 1 2

Figure: “Ladder”

» The contagion threshold of the ladder is 1/3.
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» All networks are “linearly ordered” according to the contagion
threshold.

» The contagion threshold is at most 1/2.

» The contagion threshold is maximized at the simple linear
network.

(Morris 2000)
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Summary for 2 x 2 Games

» The risk-dominant action is contagious in the simple linear
network.

» The risk-dominant action is uninvadable.

> All networks are “linearly ordered” according to the contagion
threshold.

» The simple linear network is most “powerful”.

We will see that these results no longer hold for 3 x 3 games.
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Bilingual Game

AB: "bilingual option” or “compatible technology” with cost e > 0

A AB B

A a a b
a>c, d>b
AB |a—e|a—e|d—ce
B c d d
We assume:
> a>d .-+ A Pareto-dominates B.
»a—c<d—b --- B pairwise risk-dominates A.
» ¢c<d --- The game is supermodular.

Focus on the case where c —b < a — c.
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Contagion in the Linear Network

-3 -2 -1 0 1 2 3
Figure: Linear network
» If e is small enough (e < (a — d)/2) so that
br(1[A] + 0[AB] + 3[B]) = AB:
- -2 -1 0 1 2 3 4
t=01|--- B A A A B B B
=1 B A A A AB B B
=2 B A A A AB AB B
t=3 B A A A A AB B

» = A is contagious in this network.

» But, this network is not “critical”.
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> What is the largest value of e for which A is contagious?

» What is the smallest value of e for which B is contagious?

(By definition, "contagious” = “contagious in some network”.)
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Our Result 1
A AB B

A a a b
AB |la—e|a—e | d—e
B c d d

(A: Pareto-dominant; B: risk-dominant)

Result 1. In the class of all networks,

A is contagious B is uninvadable
A is uninvadable B is contagious
T > €
e* e**
ot la=d)d=b) e (a—d)(d—b)(a—c)

2(c—b) ? = (c=b)(d=b)+(a—c)(a—d)
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Contagion of B when e > ¢*

Figure: Contagion of action B

There exists p € (0,1/2) s.t.
» br(3A+pAB+ (3 —p)B) = AB or B
» br((3 —p)A+pAB+ 4B) =B
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Contagion of A when e < e**

-2

Figure: Contagion of action A

Then there exist ¢, € (0,1), ¢ > r, s.t.
SECTRTIRY
> br(‘”TAB—i-q TB) A

> br(55A+ 4°B) = AB
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A is contagious B is uninvadable

A is uninvadable B is contagious

T > €

e* e**
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Uninvadability

» The uninvadability result is proved by finding
a monotone potential function of the bilingual game.

» Construction of such a potential function is ad hoc.
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Restricted Domains

What if we restrict attentions to a class of “simple” networks?
» “Linear/lattice network”:

Players are located on a line (or a lattice) and have
translation-invariant interactions with neighbors.
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Figure: Linear network

Figure: Linear network
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Figure: Non-linear network
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Our Result 2

Result 2. In the class of linear/lattice networks,

A is contagious

B is contagious

T > €

e

If e* < e < e**, then A is contagious only in non-linear networks.
Linear/lattice networks are not enough to determine contagion.
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“Reverse Exercise”

> In the class of 2-action coordination games, Tree and Ladder
have the same contagion threshold 1/3.

» The bilingual game can differentiate these two networks.
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Tree vs. Ladder

There is a range of payoff parameter values such that
> br(3A+3AB)=A
> br(3A+3B) = AB
» br(1A+1AB+1B)=B

= B is not contagious in Tree, but is contagious in Ladder.
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Ladder

-2 -1 0

Figure: “Ladder”

> In the above parameter range,
B is contagious in Ladder.
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Tree
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Figure: “Tree”

> In the above parameter range,
B is not contagious in Tree.
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Bundling

» An action that is contagious in Ladder may not be contagious
in Tree.

» But the opposite is always true.
If an action is contagious in Tree, then it is contagious in
Ladder.

» More generally, if one can "bundle” nodes in a network X and
obtain another network X,
then contagion is (at least weakly) more likely to occur in X’
than in X
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Our Result 3

» ©: X — X' is a weight-preserving node identification
if ¢ is onto (i.e., p(X) = X’) and it preserves weights:

Plp(z),y)= Y  Plzy) VreX\EyeX
yEp(y')

with a finite set F of exceptional nodes.

» Result 3. If there is a weight-preserving node identification
from (X, P) to (X', P'),
then (X', P') is more contagion-inducing than (X, P),
i.e., for any action a* in any symmetric supermodular game,
if a* is contagious in (X, P),
then a* is contagious in (X', P’).
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Examples

> Ladder is more contagion-inducing than Tree.

(¢ does not preserve interaction weights at the “root”;
so we need “exceptional nodes” in the definition of ¢.)

As shown, Ladder is strictly more contagion-inducing than
Tree.

» Linear networks are weakly (indeed strictly) more
contagion-inducing than multidimensional lattices.

» (The existence of weight-preserving node identifications is
sufficient, but not necessary for two networks to be
comparable.)
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Implications in incomplete information games

> Incomplete information games and local interaction games are
formally equivalent and belong to the general class of
“interaction games"
(Morris 1997, 2000).

» Incomplete information games:
each type interacts with a subset of types and payoffs are given
by the weighted sum of those from the interactions.

» Local interaction games:
each node interacts with a set of neighbors and payoffs are
given by the (weighted) sum of those from the interactions.

> Results in one class of games readily translate into the other.
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See:

» Oyama and Takahashi,
On the Relationship between Robustness to Incomplete
Information and Noise-Independent Selection in Global Games
(Journal of Mathematical Economics 47, 2011)
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Conclusion

We studied the Bilingual Game:

» Simple enough to obtain a full characterization of
contagion /uninvadability.

» Allows us to understand rich structures of networks by
analyzing contagion phenomena;

in particular, there are networks (e.g., Ladder/Tree) that are
differentiated by the analysis with the bilingual game
but not by that with 2 x 2 games.

45 /46



Open lIssues

v

Given a "realistic” network, identify what happens
(whether contagion of A or B occurs, etc.).

v

Random networks.

v

More general classes of games.

v

Heterogeneity among players.
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