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Introduction

▶ A game is played on a large network.

Players interact with their neighbors.

▶ Changes in actions of a small set of players can have large
impacts through contagion.

▶ When does contagion occur?
Which action?
In what kind of network?
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Introduction

In this paper, we conduct the following exercise:

▶ Fix a two-player game.

Analyze long-run behavior of best response dynamics
played on various networks.

▶ Key phenomena are:

▶ contagion

▶ uninvadability: no other action is contagious in any network

▶ Understand how the payoff structure affects
contagion/uninvadability.
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Introduction

... And also the following “reverse” exercise:

▶ Understand how the network structure (network topology)
affects contagion.

▶ More specifically:
Fix a network and a parameterized class of games, and
find the parameter range in which contagion occurs.

▶ Networks are classified by these parameter ranges.

E.g., a network is more contagion-inducing than another.

4 / 46



Introduction

We consider the bilingual game,
a 3× 3 game obtained by adding a bilingual option
to a 2× 2 coordination game.

▶ May be of interest itself.

▶ Refine the analysis by Morris (2000) based on 2× 2 games:

Weakly (indeed strictly, in some cases) more detailed analysis
of network topologies.

▶ Simple enough to obtain a full characterization of
contagion/uninvadability.
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Literature

This game has been studied by

[1] Goyal and Janssen (1997)

Consider a circle (circular network).

[2] Immorlica, Kleinberg, Mahdian, and Wexler (2007)

Consider “regular” graphs for the case where Pareto-dominance and

risk-dominance coincide.

[3] Easley and Kleinberg (2010)
Networks, Crowds, and Markets: Reasoning about a Highly
Connected World
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Plan of the Talk

▶ Definition of contagion and uninvadability

▶ Review: 2× 2 Coordination Games

▶ Bilingual Game—A 3× 3 Game

▶ “Reverse Exercise”: Comparison of Networks

▶ (Implications in Incomplete Information Games)

7 / 46



A Network
▶ X : a countably infinite set of nodes

▶ P : X × X → R+: interaction weights

▶ P (x, x) = 0

▶ P (x, y) = P (y, x)

▶
∑

x,y P (x, y) = ∞
▶ 0 <

∑
y P (x, y) < ∞

For example,

−3 −2 −1 0 1 2 3

Figure: Simple linear network

▶ X = Z, P (x, y) =

{
1 if |x− y| = 1,

0 otherwise .
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A Game on a Network

▶ u : A×A → R: a symmetric two-player game

▶ σ : X → A: an action configuration

▶ Player x chooses a to maximize∑
y

u(a, σ(y))P (x, y) ∝
∑
y

u(a, σ(y))P (y|x)

▶ P (y|x) = P (x,y)∑
y′ P (x,y′) : normalized weight

9 / 46



Sequential Best Response Dynamics

(σt)∞t=0: a best response sequence

▶ For each t, there exists at most one x, denoted by xt, such
that σt(xt) ̸= σt−1(xt).

▶ σt(xt) is a best response against σt−1.

▶ If limt→∞ σt(x) = s,
then for all T ≥ 0, s ∈ BR(σt|x) for some t ≥ T .

Most of our results go through with simultaneous best responses.

10 / 46



Contagion/Uninvadability in Network Games

▶ a∗ is contagious in network (X , P ) if:
there exists a finite set of players s.t.
if this set of players initially plays action a∗,
then the whole population will eventually play a∗

in any best response sequence.

▶ a∗ is contagious if it is contagious in some network.

▶ a∗ is uninvadable if:
for all networks,
if a∗ is played by almost all players,
then it continues to be played by almost all players
in any best response sequence.
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Review: 2× 2 Coordination Games

u =

A B

A 11 0

B 3 10

▶ Both A and B: Nash equilibria

▶ A: Pareto-dominant

▶ B: risk-dominant

▶ B is the best response against the opponent’s mixed action
1
2A+ 1

2B.
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Contagion and Uninvadability in 2× 2 Games

▶ The risk-dominant action B is contagious.

(Demonstrated by many papers.)

▶ B is also uninvadable. (Morris 2000)

▶ The risk-dominated action A cannot be contagious.
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The Proof of Contagion

−3 −2 −1 0 1 2 3

Figure: Simple linear network

▶ B spreads contagiously from two consecutive nodes.
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The Proof of Uninvadability

The proof is based on potential/Lyapunov functions.

▶ Replace payoff function u by its potential v

u =

A B

A 11 0

B 3 10

by v =

A B

A 11 3

B 3 13

▶ v is symmetric, and satisfies

v(a, b)− v(a′, b) = u(a, b)− u(a′, b)

In particular, u and v are best response equivalent:
incentives to choose A or B is the same between u and v.

▶ v is maximized at (B,B).
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▶ Define the Lyapunov function by

V (σ) =
1

2

∑
x,y∈X

P (x, y)
[
v(σ(x), σ(y))− 13

]

▶ In general, −∞ ≤ V (σ) ≤ 0

▶ Suppose that “almost all” players play B in period 0.
More formally, the initial weight on non-(B,B) pairs is finite:

1

2

∑
(σ0(x),σ0(y))̸=(B,B)

P (x, y) < ∞

▶ V (σ0) > −∞.
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▶ Recall that only xt ∈ X changes action in period t.

V (σt)− V (σt−1)

=
1

2

∑
y∈X

P (xt, y)(v(σt(xt), σt(y))− v(σt−1(xt), σt−1(y)))

+
1

2

∑
y∈X

P (y, xt)(v(σt(y), σt(xt))− v(σt−1(y), σt−1(xt)))

=
∑
y∈X

P (xt, y)(v(σt(xt), σt(y)︸ ︷︷ ︸
=σt−1(y)

)− v(σt−1(xt), σt−1(y)))

≥ 0.

▶ V (σt) ≥ V (σt−1) ≥ · · · ≥ V (σ0) > −∞.

▶ The weight on non-(B,B) pairs is bounded from above.

▶ Thus B is uninvadable.
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Reverse Exercise: Contagion Thresholds

We quantify the “power” of a network

▶ up =

A B

A 1 0

B 1− p 1− p

▶ Contagion threshold of (X , P ):

ξ(X , P ) := sup{p : B is contagious in (X , P ) for up}
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−3 −2 −1 0 1 2 3

Figure: Simple linear network

▶ The contagion threshold of the simple linear network is 1/2.
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Figure: “Tree”

▶ The contagion threshold of the tree is 1/3.
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−2 −1 0 1 2

−2 −1 0 1 2

α

β

Figure: “Ladder”

▶ The contagion threshold of the ladder is 1/3.
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▶ All networks are “linearly ordered” according to the contagion
threshold.

▶ The contagion threshold is at most 1/2.

▶ The contagion threshold is maximized at the simple linear
network.

(Morris 2000)
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Summary for 2× 2 Games

▶ The risk-dominant action is contagious in the simple linear
network.

▶ The risk-dominant action is uninvadable.

▶ All networks are “linearly ordered” according to the contagion
threshold.

▶ The simple linear network is most “powerful”.

We will see that these results no longer hold for 3× 3 games.
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Bilingual Game

AB : “bilingual option” or “compatible technology” with cost e > 0

A AB B

A a a b

AB a− e a− e d− e

B c d d

a > c, d > b

We assume:

▶ a > d · · · A Pareto-dominates B.

▶ a− c < d− b · · · B pairwise risk-dominates A.

▶ c ≤ d · · · The game is supermodular.

Focus on the case where c− b < a− c.

24 / 46



Contagion in the Linear Network

−3 −2 −1 0 1 2 3

Figure: Linear network

▶ If e is small enough (e < (a− d)/2) so that
br(12 [A] + 0[AB ] + 1

2 [B]) = AB :

· · · −2 −1 0 1 2 3 4 · · ·
t = 0 · · · B A A A B B B · · ·
t = 1 · · · B A A A AB B B · · ·
t = 2 · · · B A A A AB AB B · · ·
t = 3 · · · B A A A A AB B · · ·

▶ ⇒ A is contagious in this network.

▶ But, this network is not “critical”.
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▶ What is the largest value of e for which A is contagious?

▶ What is the smallest value of e for which B is contagious?

(By definition, “contagious” = “contagious in some network”.)
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Our Result 1
A AB B

A a a b
AB a− e a− e d− e
B c d d

(A: Pareto-dominant; B: risk-dominant)

Result 1. In the class of all networks,

- e
e∗ e∗∗

A is contagious B is uninvadable

A is uninvadable B is contagious

e∗ = (a−d)(d−b)
2(c−b) , e∗∗ = (a−d)(d−b)(a−c)

(c−b)(d−b)+(a−c)(a−d) .
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Contagion of B when e > e∗

−3 −2 −1 0 1 2 3
p p p p p p

1
2 − p 1

2 − p 1
2 − p

1
2 − p 1

2 − p 1
2 − p 1

2 − p

Figure: Contagion of action B

There exists p ∈ (0, 1/2) s.t.

▶ br
(
1
2A+ pAB + (12 − p)B

)
= AB or B

▶ br
(
(12 − p)A+ pAB + 1

2B
)
= B
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Contagion of A when e < e∗∗

−2 −1 0 1 2

−2 −1 0 1 2

1 − q 1 − q 1 − q 1 − q 1 − q 1 − q

q + r q + r q + r q + r q + r

q − r q − r q − r q − r q − r q − r

α

β

Figure: Contagion of action A

Then there exist q, r ∈ (0, 1), q ≥ r, s.t.

▶ br
(1+q

2 A+ 1−q
2 B

)
= A

▶ br
( q+r

2q AB + q−r
2q B

)
= A

▶ br
(
1−r
2 A+ 1+r

2 B
)
= AB
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- e
e∗ e∗∗

A is contagious B is uninvadable

A is uninvadable B is contagious
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Uninvadability

▶ The uninvadability result is proved by finding
a monotone potential function of the bilingual game.

▶ Construction of such a potential function is ad hoc.
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Restricted Domains

What if we restrict attentions to a class of “simple” networks?

▶ “Linear/lattice network”:

Players are located on a line (or a lattice) and have
translation-invariant interactions with neighbors.
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−3 −2 −1 0 1 2 3

Figure: Linear network

−3 −2 −1 0 1 2 3
p p p p p p

1
2 − p 1

2 − p 1
2 − p

1
2 − p 1

2 − p 1
2 − p 1

2 − p

Figure: Linear network
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−2 −1 0 1 2

−2 −1 0 1 2

1 − q 1 − q 1 − q 1 − q 1 − q 1 − q

q + r q + r q + r q + r q + r

q − r q − r q − r q − r q − r q − r

α

β

Figure: Non-linear network

34 / 46



Our Result 2

Result 2. In the class of linear/lattice networks,

- e
e∗ e∗∗

A is contagious B is contagious

If e∗ < e < e∗∗, then A is contagious only in non-linear networks.
Linear/lattice networks are not enough to determine contagion.
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“Reverse Exercise”

▶ In the class of 2-action coordination games, Tree and Ladder
have the same contagion threshold 1/3.

▶ The bilingual game can differentiate these two networks.
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Tree vs. Ladder

There is a range of payoff parameter values such that

▶ br(23A+ 1
3AB) = A

▶ br(23A+ 1
3B) = AB

▶ br(13A+ 1
3AB + 1

3B) = B

⇒ B is not contagious in Tree, but is contagious in Ladder.
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Ladder

−2 −1 0 1 2

−2 −1 0 1 2

α

β

Figure: “Ladder”

▶ In the above parameter range,
B is contagious in Ladder.
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Tree
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Figure: “Tree”

▶ In the above parameter range,
B is not contagious in Tree.
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Bundling

▶ An action that is contagious in Ladder may not be contagious
in Tree.

▶ But the opposite is always true.
If an action is contagious in Tree, then it is contagious in
Ladder.

▶ More generally, if one can “bundle” nodes in a network X and
obtain another network X ′,
then contagion is (at least weakly) more likely to occur in X ′

than in X
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Our Result 3

▶ φ : X → X ′ is a weight-preserving node identification
if φ is onto (i.e., φ(X ) = X ′) and it preserves weights:

P ′(φ(x), y′) =
∑

y∈φ−1(y′)

P (x, y) ∀x ∈ X \ E, y′ ∈ X ′.

with a finite set E of exceptional nodes.

▶ Result 3. If there is a weight-preserving node identification
from (X , P ) to (X ′, P ′),
then (X ′, P ′) is more contagion-inducing than (X , P ),
i.e., for any action a∗ in any symmetric supermodular game,
if a∗ is contagious in (X , P ),
then a∗ is contagious in (X ′, P ′).
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Examples

▶ Ladder is more contagion-inducing than Tree.

(φ does not preserve interaction weights at the “root”;
so we need “exceptional nodes” in the definition of φ.)

As shown, Ladder is strictly more contagion-inducing than
Tree.

▶ Linear networks are weakly (indeed strictly) more
contagion-inducing than multidimensional lattices.

▶ (The existence of weight-preserving node identifications is
sufficient, but not necessary for two networks to be
comparable.)
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Implications in incomplete information games

▶ Incomplete information games and local interaction games are
formally equivalent and belong to the general class of
“interaction games”
(Morris 1997, 2000).

▶ Incomplete information games:
each type interacts with a subset of types and payoffs are given
by the weighted sum of those from the interactions.

▶ Local interaction games:
each node interacts with a set of neighbors and payoffs are
given by the (weighted) sum of those from the interactions.

▶ Results in one class of games readily translate into the other.
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See:

▶ Oyama and Takahashi,
On the Relationship between Robustness to Incomplete
Information and Noise-Independent Selection in Global Games
(Journal of Mathematical Economics 47, 2011)
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Conclusion

We studied the Bilingual Game:

▶ Simple enough to obtain a full characterization of
contagion/uninvadability.

▶ Allows us to understand rich structures of networks by
analyzing contagion phenomena;

in particular, there are networks (e.g., Ladder/Tree) that are
differentiated by the analysis with the bilingual game
but not by that with 2× 2 games.
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Open Issues

▶ Given a “realistic” network, identify what happens
(whether contagion of A or B occurs, etc.).

▶ Random networks.

▶ More general classes of games.

▶ Heterogeneity among players.

▶ · · ·
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