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Type Spaces

> Type space (T, Ti)icr:
» T;: set of i's types (countable)
» 7 T, — A(T-;): i's belief
> T=liesTi Toi = [1;6 T}
» If there is a common prior P € A(T') with
P(t;) = P({t;} x T—;) > 0 for all i and ¢,

for E_; C T_;.

» =25 T = [Lie: 7.
with a generic element E = (E;);er € T.

)
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p-Belief Operator

» BY: T = T
BP(E) = {t; € T; | t; € E; and m(t;)(E_;) > p},

where E_; = H#i E;.

Proposition 1

1. BY(E) C E;.
2. IfE CF, then BY(E) C BY(F).
3. IFE° D E! O -+, then BY(N, EF) = N2, BY (EF).

(3. FEY; D EL; 5.+, then mi(t:) (Mo EY;) = limpyo0 mi(t:) (EX;).)
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Common p-Belief (Iteration)

» For p € [0,1}7,

BY(E) = (B/"(E))ier,

)

CP(E) = [ (B))*(E).

k=1

Definition 1

E € T is common p-belief at t € T if t; € CP(E) for all i € I.
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Common p-Belief (Fixed Point)

Definition 2
F € T is p-evident if

F, C BP(F) forallieI.
(Equivalent to the condition with “F; = BP(F)".)

Definition 3

E € T is common p-belief at t € T if there exists a p-evident
event profile F such that

ti € F; C BP(E) forall i € I.

(Equivalent to the condition with “t; € F; C E;".)
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Equivalence
Proposition 2

CP(E) is p-evident, i.e., CP(E) C BP(CP(E)) for alli € I.

Proof.
CP(E) = N2, BE(B)" Y(E)) = BP(MpZ, (BDM 1(E). O

Proposition 3

CP(E) is the largest p-evident event profile in E, i.e.,
ifF CE and F C BY(F), then F C CP(E).

Proof.

First, F ¢ BP(F) c BP(E).

Suppose F C (BP)*(E). Then
F C BY(F) C BY((BY)H(E)) = (BY)"(E). O
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Equivalence

Proposition 4
The two definitions are equivalent, i.e.,

ti € CP(E) foralliel
<= 3JF : p-evident s.t. t; € F; C BP(E) for all i € I.

Proof.
> U=
CP(E) is p-evident by Proposition 2, and CP(E) C BP(E).

> =
F C CP(E) by Proposition 3.



Example: Email Game

>

>

T =T =1{0,1,2,...}
m: T — A(Ty):

1 ift1=0,t3=0
1 .
5 = |ft121,t2:t1—1
mi(talt1) = ¢ 375
2 ¢ |ft121,t2:t1
0 otherwise
T Tg — A(Tl)i
F— ifty=01=0
1 .
5 ifta>1,1t =1
ma(tilts) = ¢ 27
=% iftg >0,t =t2+1
0 otherwise

Let £1 =11 \ {0} and Ey =15, and p; > %
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Connection to Games 1

>

>

>

Type space (15, Ti)ier
Players I =1,...,|I|
Binary actions A; = {0, 1}

F = (F;)ici € T is identified with the (pure) strategy profile o
such that o;(t;) = 1 if and only if ¢t; € Fj.

Fix E€T.
Incomplete information game uP:

If t; € E;: for all t—; with m;(¢;)(t—;) > 0,

if a—; = ]_,i,

‘ 1—p;
ul (1, a—i, t;,t;) = { ’ .
—Di otherwise,

ufl (O, a—;, ti, t_i) =0.

If t; ¢ E;: 0is a dominant action.
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v

v

v

v

BP'(E;,F_;) is the (largest) best response to F_;
(play 1 if indifferent).

CP(E) is the largest strategy that survives the iterated
elimination of strictly dominated strategies.

F is an equilibrium if and only if F C E and F is p-evident.

CP(E) is the largest equilibrium.
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Connection to Games 2

» Players I =1,...,|I]

» Actions A; (finite)

» Complete information game g, g;: A - R

> a* € Ais a p-dominant equilibrium of g if

a; € bri(\;)
for any \; € A(A_;) such that \;(a*;) > p;.
» Incomplete information game u, u;: A X T — R

> Let

={t; € T; | ui(a,t;,t_;) = gi(a) for all a € A and
for all t_; € T_; with Wi(ti)(t_i) > 0},

and T8 = (T7)icr € T.
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Lemma 5

Suppose that a* is a p-dominant equilibrium of g.
Then u has an equilibrium o such that o(a*|t) =1
for all t € CP(T%).
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Proof

» 3% set of all strategies o; such that o;(a}|t;) =1 for
all t; € CP(T®)

¥t = Hie[ DRI Hjel E;
> >* is nonempty, convex, and compact (in appropriate topology).

» Define the correspondence 3/ : ¥*, — ¥ by

ﬁ;(Opi) = {O‘i S EZ | ai(ai\ti) >0=a; € BRi(O'fi)(ti)},

and B*: X = 5* by 3°(0) = [1,e; B:(04).

» (3* is convex- and compact-valued and upper semi-continuous.
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Proof

It remains to show that 8} (o_;) # 0 for all i € I and
all o_; € 3%,

Let t; € CZP(Tg) (C ngz) and o_; € Z*—z"
We want to show that a] € BR;(0_;)(t;).

CP(T#®) is p-evident by Proposition 3,
so that CP(T8) C BP(CP(T®)).

Hence,
miti)({t=i | o—i(a®;[t—i) = 1}) > mi(t:)(CP,(T*®)) > pi,
where the last inequality follows from t; € BP(CP(T®)).

Since a* is p-dominant, this implies that a} € BR;(0_;)(t;).
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Proof

» Therefore, by Kakutani's Fixed Point Theorem,
B* has a fixed point in ¥*, which is an equilibrium of u.
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Proposition 6

Suppose that a* is a strict equilibrium of g.

For any § > 0, there exists € > 0 such that

for any P € A(T) such that P(CP(T%8)) > 1—¢ forany p < 1,
there exists an equilibrium o of (T, P,u) such that
P{teT|o(a*t)=1})>1-4.

» A strict equilibrium is p-dominant for some p < 1.

» The proposition holds even with non common priors P;.
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Critical Path Theorem (Kajii and Morris 1997a)

» P e A(T): common prior

Theorem 1

For p € [0,1)!, suppose that >, p; < 1, and let
K(p) = (1 —minger pi) /(1 — D ey Pi)-

Then for any type space ((T;)icr, P) and any E € T,

P([Le CY(E)) 21— 5(p) (1 = P ([Lic; Ei)) -

> |f Zie[pi < 1,

P ([Tic; CP(E)) = 1 as P ([];e; Ei) — 1.

» In the Email game example where p1,p2 > 1/2, we have
CP(E) =0 while P ([T;c; Ei) =1 —e¢.
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