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Complete Information Games

» [ ={1,...,|I]}: Set of players

> A; ={0,1}: Action set (A=TLer A A =11, 4))
» 0=(0,...,00€4, 1=(,...,1)e A

> f;: 2I\li} 5 R: Payoff gain function

> f:(S): i's payoff gain from action 1 over 0
when subset S C I'\ {i} of players play action 1

» Assume supermodularity: f;(S) increasing in S

We write f = (fi)ier.
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Incomplete Information Elaborations
» T;: (Countable) set of types (T =1Lic; T T = [1; T))

» P e A(T): Common prior over T
> wu;: A x T — R: Payoff function (u= (ui)ier)

Write d;(S,t) = ui(1sugy,t) — ui(ls,t).
» Given f = (f;)ier, let

TF = {t; € T; | di(S, (ts,t_;)) = fi(S) for all § € 2\ and

for all t_; € T_; with P(t_;|t;) > 0}

.-+ Set of i's types that know that payoffs are given by f;

» (T, P,u) is an e-elaboration of f if
PT*)>1—-¢

i.e., Pr(players know that payoffs are given by f) > 1 —e.
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Robustness to Incomplete Information

» a* € Ais robust (to incomplete information) in f if
for any § > 0, there exists € > (0 such that
for any e-elaboration of f, there exists an equilibrium

0* = (07 )ier such that

S° P [[ ottt (@) > 1 —6.

teT el

» In the following, we study the robustness of 0 = (0, ...,0).
(OT study that of 1.)
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Robustness to Canonical Elaborations

» For extreme action profiles (e.g., 0) in supermodular games,
robustness is equivalent to robustness to “canonical
elaborations”.

» (T, P,u) is an e-canonical elaboration of f if
it is an e-elaboration such that for all ¢; € T; \ T7,

d;(S, (t;,t—;)) =1forall S C I'\{i} and all t_; € T_;

(and hence action 1 is a dominant action for all t; € T; \ T}).
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» 0 is robust if and only if it is robust to canonical elaborations,
ie.,

for any d > 0, there exists € > 0 such that
for any e-canonical elaboration of f, there exists
an equilibrium ¢* = (¢} );cs such that

S Pt [[ort)0) =15

teT il

» By supermodularity, this is equivalent to the following:

for any § > 0, there exists € > 0 such that
for any e-canonical elaboration of f,

P{teT|o;(t;)(0)=1foralliecI})>1-04,

where o = (g;)ier is the smallest equilibrium.
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Result
Theorem 1
For a generic binary-action supermodular game f,
the following conditions are equivalent:

1. 0 is robust in f.

2. 0 is a strict monotone potential maximizer in f.

3. There exists no p € A(T'\ {(0}) that satisfies sequential
obedience in £, i.e.,

Z p(v) fi(S=i()) >0 for all i € I.
~vel;

> T': Set of sequences of distinct players
» I'; C I': Set of sequences in I' in which i appears
» S_;(y): Set of players that appear before i in v
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» 2 = 1: By Morris and Ui (2005) for general supermodular
games with (finitely) many actions, based on a potential
maximization approach.

Provide an alternative proof based on a higher-order beliefs
approach.
» Not 3 = not 1: For generic payoffs.

Show:

if there exists p € A(T"\ {0}) that satisfies strict sequential
obedience, then for any € > 0, there exists an e-elaboration
such that 0 is never played in the smallest equilibrium.

> 2 < 3: By duality.
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Monotone Potential Maximizer (MP-Maximizer)

» 0 is a strict MP-maximizer in f if there exist v: 2/ — R and
A = (Ai)ier > 0 such that

Aifi(S) < o(SU{i}) —v(S)

foralli e I and all S C I'\{i}, and v() > v(S) for all S # 0.

Such a function v is called a strict monotone potential of f for
0.

» Called "monotone potential maximizer” without “strict” in
OT.
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Dual Characterization (2 < 3)

» For a sequence of distinct players v = (iy,..., i),
write S_;,(7v) = {i1,..., %1} and S(v) = {i1,..., ik}

» I': set of all sequences; I';: set of sequences containing 4

» There exists a strict monotone potential for 0 with weights
A = (\i)ier if and only if

Z)\fz _i(7)) <0 for all vy € T\ {0}. (%)

» Duality: Either (x) has a solution A > 0, or

> p(fi(S-i(y)) = 0foralli eI (%)

~v€EL;

has a solution p € A(T"\ {(}), but not both.
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Proof of “MP-Maximization = Robustness”

» In OT, this is proved as “Generalized Critical Path Theorem”,
stated in terms of “generalized belief operator”.

» Here, we prove in terms of best responses.
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» Suppose that there exists a strict monotone potential v for O
with weights (\;);er > 0:

NFi(S) < v(SU{i}) - u(S)
forallie I and all S C I'\{i}, and v() > v(S) for all S # (.
» Fix any e-canonical elaboration (7', P,u):
> d;(S, (ti,t—;)) = fi(S) for t; € T (“normal types”)

> P(T*)>1—¢
» Action 1: dominant action for ¢; € T; \ T;* (*“crazy types")
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Starting with the smallest strategy o¥(¢;) = 0 for all i € I and
all t; € T;, apply sequential best response in the order
1,2,..., 1]
First, let types in T; \ T} switch:
Forn=1,...,|I|,

> Ugl’(ti) =1lifi=nandt; €T; \Ti*'

> o7 (t;) = ol !(t;) otherwise.
Then, let types in T} switch:
Forn=1I|+1,...,

> ol'(t;) =1ifi=n (mod |I]) and

S Pt t—i) fi(S(e™7H(t—:))) > 0,

> o7 (t;) = ol !(t;) otherwise.

By supermodularity, this process converges monotonically to
the smallest equilibrium.
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> Let
> n;(t;) =nif 0’?71(157;) =0and ol(t;) =1, and
> n,;(t;) = oo if o' (t;) = 0 for all n.
Write n(t) = (n1(t1), ..., ()
> We want to show:

P{teT|n(t)=(c0,...,00)}) >1—rx (1—P(T"))

for some constant k = k(v) that depends only on payoffs in f
through monotone potential v (and is independent of
the elaboration).

- "(Generalized) Critical Path Theorem”

» Then, we have P({t € T | n(t) = (c0,...,0)}) = 1
as P(T*) — 1 uniformly over all elaborations.
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» For t; € T} such that n;(t;) < oo,

ZPtl,t ) F(S(@™ 1)) > 0.

P> Add these incentive conditions across such %;'s, multiple by
Ai > 0, and then add across players.

» Notation:

> For v = (i1,...,0):

T(7): Set of type profiles ¢ such that n;(t;) = oo if i ¢ S(v)
and n;,(t;,) <n;, (t;, ) ifand only if £ <m

» Fort = (ti)ier:
S*(t)y={iel|t;eT’}
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We have

0<3 N > Y Pl t)f(S(@™ T )

i t €T iy (ts)<oo t—i
:Z Z P(t) Z Ai fi(S—i(7))
v€eT teT(v) i€S(y)NS*(t)
<SSP0 Y (oS- U{iY) — w(S-i(7)
YL teT () ZES(W)QS (t)
=> > P 7)) = o(S(y) \ 5*(1)))
YeL teT(v)
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=3 PO((S(H) —v(®)

Y€l teT(v)NT*

+3° S P@)((S()) - o(S() \ S*(£))

yel teT (y)\T*
< > Y PoW-vO)+>. > PHM
YED\{0} t€T ()T e teT(P\T*

=P{teT* | n(t) # (00,...,00) (W —v(0)) + P(T\T")M,
where
v' = maxv(S),

540

M = Sglg};@(v(S) —v(9")).
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» Hence we have

P({teT" | n(t) # (c0,...,00)}) <

» Finally, we have

1-P{teT|n(t) = (c0,...,00)})
= P(T\T*) +P({t € T* | n(t) # (c0,...,00)})

< <1 i @w_v/)“ ~ P(T")).

=k(v)
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p-Dominance (Kajii and Morris 1997)

» Forp = (p1,...,p|1) €0, 1]7, consider the game

i otherwise.

> 0 is a p-dominant equilibrium:

For all i € I and all o € A(2"\M#) such that oy (0) > ps,
>oscngiy @(9)fi(S) = pi — ai(0) < 0.

» This is a potential game with potential

U(S)—{l_Z’EIpi IfSZQ,

- —YiensPi otherwise.

> v(D) > v(S) forall S # (0 if and only if Y=, ;p; < 1.

19/30



» For this v,

maxgog.29(0(5) — v(5"))
v(() — maxg_pv(S)

maxier Y ;. Pj
1- Zie[ Di

I —minerp; HKM(

k(v) =1+

-1+

p).
1- Zie[ Di
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Proof of “Sequential Obedience = Non-Robustness”

» Suppose that there exists p € A(T"\ {(}) that satisfies strict
sequential obedience:

> p() fi(S-i(7)) > 0

~vel;
for all i € I such that p(I';) > 0. (s*x)

» By supermodularity, there exists (} # S C I such that

there exists p € A(I'(S)) that satisfies sequential obedience,
where T'(.S) is the set of permutations of players in S.

(OT 2019, Appendix A.3)
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» For any such p € A(T'(S)), consider the following elaboration:
> T, ={1,2,...} foricS;
T, = {oo} fori e I'\S.

» m drawn from Z according to the distribution n(1 — n)™,
where 1 = 0;

» ~ drawn from '\ {0} according to p;

» Player i receives signal t; given by

b m + (ranking of ¢ iny) ifyeT;
R S otherwise;

> 1 <t; <|I| —1: action 1 dominant.
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» In this elaboration, in any equilibrium, all types t; of i € S
play action 1:

> If types t; < 7 play action 1, then approximately the payoff for
type t; = 7 is at least

> p() fi(S-i(7)) x const,

RISIN
which is positive by (xkx).
» Hence, 0 is not played at any t € T'.

» This implies that 0 is not robust.
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Definitions of MP-Maximizer

» (Simplified version of) the original definition by Morris and Ui
(2005):

v: 2! — R is a monotone potential of f for 0 if
min br¥ (m;) < max bry (m;)
for all i € I and all m; € A(21M),
and v(0) > v(S) for all S # 0. (MU)

» Strict version by Oyama, Takahashi, and Hofbauer (2008):
v: 2 — R is a strict monotone potential for f for 0 if

max brf (m;) < max bry (m;)
forallie I and all w; € A(QI\{i})7
and v(0) > v(S) for all S # 0. (OTH)
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Equivalence (Strict Version)

» Condition (OTH) is equivalent to our definition:
There exists A = (\;)ier > 0 such that

Aifi(S) < v(SU{i}) —v(S)
foralli e Iandall ST\ ({i},
and v(0) > v(S) for all S # 0. (1)

» Assume condition (OTH).

Fix any 7 € I.
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. I|-1
» Then there exists no (m;,d;) € Ri‘ 741 such that

S m(S)5(S) 20,

Seal\{#}

= Y m(S)SULi}) —v(S) — 6 =0,
Se2i\{i}
—0; < 0.

> By duality (Farkas’ Lemma), there exists (i1, \i2) € R
such that

Xinfi(S) = Xi2(w(S U {i}) —v(S)) <0 for all S e 2!\

—Xi2 < -1

> If A1 =0, then v({i}) — v(?) < 0 would be violated.
» Thus, set \; = )\@1/)\172 > 0.
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Equivalence (Weak Version)

» Condition (MU) is equivalent to the following:
There exists A = (\;)ier > 0 such that

Aifi(S) < v(SU{i}) —v(S)
for all @ € I such that f;(I\ {i}) >0 andall S C I\ {i},
and v(0) > v(S) for all S # 0. (2)

» Assume condition (MU).
Fix any @ € I such that f;(I\ {i}) > 0.
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Then there exists no m; € A(27\M#) such that

Y. m(9)fi(s) >0,

Seal\{}

- > m(S)Su{i}) - v(S)) > 0.

Se2l\{}

By duality (Ville's Theorem), there exists
(Ni1, Ai2) € R2\ {(0,0)} such that

Xinfi(S) = Xia(v(SU{i}) —v(S)) <0 for all S e 2/\},

If A\i2 =0 and thus A\;1 > 0, then f;(1\ {i}) > 0 would be
violated.

If A1 =0, then v({i}) — v(0) < 0 would be violated.
Thus, set \; = )\Z"l/AZ’Q > 0.
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» Denote I' = {i € I| f;(I\ {i}) > 0}.

> Let f1(-,07 /1) be the game with players in I' where the
players in I\ I' are fixed to play action 0.

Proposition 1

0 is an MP-maximizer in £ if and only if 051 is a strict
MP-maximizer in f1 (-, 07\ 1).
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Characterization of Robustness of Extreme Action Profiles

Proposition 2

In any binary-action supermodular game, O is robust if and only if
it is an MP-maximizer.

> “If": by Morris and Ui (2005)

(For any action profile of supermodular games with (finitely)
many actions)

» “Only if”: by Oyama and Takahashi (2023)

Does not hold for non-extreme action profiles.
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