
Global Games

Daisuke Oyama

Topics in Economic Theory

October 4, 2024



Papers

▶ Carlsson, H. and E. van Damme (1993). “Global Games and
Equilibrium Selection,” Econometrica 61, 989-1018.

▶ Frankel, D., S. Morris, and A. Pauzner (2003). “Equilibrium
Selection in Global Games with Strategic Complementarities,”
Journal of Economic Theory 108, 1-44.

1 / 21



Setting (FMP)

Global game G(κ)

▶ Players: I = {1, . . . , |I|}

▶ Actions of player i: Ai = {0, 1, . . . , ni}

▶ State: θ ∈ R ∼ continuous density ϕ, connected support

▶ Payoffs of player i: ui(a, θ)

▶ ∆ui(ai, a
′
i, a−i, θ) = ui(ai, a−i, θ)− ui(a

′
i, a−i, θ)

▶ Signal of player i: xi = θ + κεi

▶ (ε1, . . . , ε|I|) ∼ continuous joint density f , support contained

in [− 1
2 ,

1
2 ]

I

▶ Independent of θ
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Assumptions

1. Strategic complementarities:

For all i ∈ I,

if ai ≥ a′i and a−i ≥ a′−i, then
∆ui(ai, a

′
i, a−i, θ) ≥ ∆ui(ai, a

′
i, a

′
−i, θ) for all θ.

2. Dominance regions:

There exist θ and θ such that for all i ∈ I,

▶ if θ ≤ θ, then ∆ui(0, ai, a−i, θ) > 0 for all ai ̸= 0 and all a−i;
and

▶ if θ ≥ θ, then ∆ui(ni, ai, a−i, θ) > 0 for all ai ̸= ni and all
a−i.
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3. Strict state monotonicity:

There exists K0 > 0 such that for all i ∈ I and all a−i,

if ai ≥ a′i and θ ≥ θ′, then

∆ui(ai, a
′
i, a−i, θ)−∆ui(ai, a′i, a−i, θ

′) ≥ K0(ai−a′i)(θ−θ′).

4. Payoff continuity:

For all i ∈ I and all a, ui(a, θ) is continuous in θ.
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Two Players, Two Actions (Carlsson and van Damme)

▶ I = {1, 2}, A1 = A2 = {0, 1}

▶ Payoffs:

0 1

0 0 0

1 −pi(θ) 1− pi(θ)

▶ pi(θ): continuous, strictly decreasing

▶ pi(θ) > 1 if θ ≤ θ (⇒ action 0 is dominant)

pi(θ) < 0 if θ ≥ θ (⇒ action 1 is dominant)

▶ For θ such that 0 < pi(θ) < 1, i = 1, 2,
(0, 0) and (1, 1) are strict Nash equilibria.
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▶ Risk-dominance in asymmetric 2× 2 coordination games:

▶ (1, 1) risk-dominant at θ
⇐⇒ p1(θ)p2(θ) < (1− p1(θ))(1− p2(θ))
⇐⇒ p1(θ) + p2(θ) < 1

▶ (0, 0) risk-dominant at θ
⇐⇒ p1(θ)p2(θ) > (1− p1(θ))(1− p2(θ))
⇐⇒ p1(θ) + p2(θ) > 1

▶ Let θ∗ be the unique θ such that

p1(θ) + p2(θ) = 1

▶ (1, 1) risk-dominant at θ iff θ > θ∗

▶ (0, 0) risk-dominant at θ iff θ < θ∗
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Simplifying Assumptions

▶ Uniform prior:

ϕ uniform on some [a, b] (sufficiently large)

▶ Private values:

Payoffs ui(a, xi), depending on signal xi (rather than θ)
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Equilibrium Selection

Theorem 1 (Two-player, two-action case)

In the limit as κ→ 0, an essentially unique strategy profile survives
iterative dominance; and
it plays the risk-dominant equilibrium.
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Posterior Beliefs

▶ fκ: joint density of (κε1, κε)

(fκ(z1, z2) =
1
κ2 f(

z1
κ ,

z2
κ ))

▶ Conditional density (for x1, x2 away from the boundary):

fκ1 (x2|x1) =
∫
fκ(x1 − θ, x2 − θ)ϕ(θ)dθ∫∫
fκ(x1 − θ, x2 − θ)dx2ϕ(θ)dθ

=

∫
fκ(x1 − θ, x2 − θ)dθ∫∫
fκ(x1 − θ, x2 − θ)dx2dθ

=

∫
fκ(x1 − θ, x2 − θ)dθ

fκ2 (x1|x2) = · · · =
∫
fκ(x1 − θ, x2 − θ)dθ
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▶ Density of κε1 − κε2:

ψκ(y) =

∫
fκ(z + y, z)dz

▶ Thus,

fκ1 (x2|x1) = fκ2 (x1|x2) =
∫
fκ(x1 − θ, x2 − θ)dθ

=

∫
fκ(z + x1 − x2, z)dz

= ψκ(x1 − x2)
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▶ Therefore,

P (x2 ≥ ξ2|x1 = ξ1) =

∫
x2≥ξ2

ψκ(ξ1 − x2)dx2

=

∫
x1≤ξ1

ψκ(x1 − ξ2)dx1

= 1− P (x1 ≥ ξ1|x2 = ξ2)

or

P (x2 ≥ ξ2|x1 = ξ1) + P (x1 ≥ ξ1|x2 = ξ2) = 1 (∗)
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Iterative Dominance

▶ By Dominance regions, player i observing a signal above some

threshold ξ
1
i play 1.

▶ Assuming that player j with signals above ξ
1
j play 1,

by Action monotonicity and State monotonicity, player i

observing a signal above some threshold ξ
2
i play 1, where

ξ
2
i ≤ ξ

1
i .

▶ · · ·

▶ We have ξ
1
i ≥ ξ

2
i ≥ · · · ↘ ξi.

▶ Similarly, from below we have ξ1
i
≤ ξ2

i
≤ · · · ↗ ξ

i
.

▶ All these depend on κ;

write the limits as ξi(κ) and ξi(κ).
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▶ By continuity, player 1 with signal ξ1(κ) when opponents play
1 above ξ2(κ) and 0 below ξ2(κ) must be indifferent between
playing 1 and 0:

P (x2 ≥ ξ2(κ)|x1 = ξ1(κ)) = p1(ξ1(κ))

▶ Similarly,

P (x1 ≥ ξ1(κ)|x2 = ξ2(κ)) = p2(ξ2(κ))

▶ In particular, it must be that |ξ1(κ)− ξ2(κ)| < κ.

▶ By (∗), we have

p1(ξ1(κ)) + p2(ξ2(κ)) = 1.
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▶ Let (ξ
∗
, ξ

∗
) be any limit point of (ξ1(κ), ξ2(κ)) as κ→ 0.

▶ By continuity, we have

p1(ξ
∗
) + p2(ξ

∗
) = 1.

▶ Therefore, we must have ξ
∗
= θ∗.

▶ It follows that ξ1(κ) and ξ2(κ) both converge to θ∗ as κ→ 0.

▶ Symmetrically, ξ
1
(κ) and ξ

2
(κ) both converge to θ∗ as κ→ 0.

▶ Hence, in the limit as κ→ 0, the game is dominance solvable,
and the surviving strategy profile plays (1, 1) if θ > θ∗ and
(0, 0) if θ < θ∗.
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Many Players, Many Actions (FMP)

▶ Limit Uniqueness

▶ Noise dependence of the surviving strategy profile

▶ Sufficient conditions for noise independence

▶ Two-player two-action case

▶ · · ·
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Limit Uniqueness

Theorem 2
G(κ) has an essentially unique strategy profile surviving iterative
dominance in the limit as κ→ 0.
More precisely, there exists an increasing pure strategy profile s∗

such that if for each κ > 0, sκ is a pure strategy profile surviving
iterative dominance in G(κ), then limκ s

κ(x) = s∗(x) for all x but
except possibly for finitely many discontinuous points of s∗.
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With a uniform prior over y; the posterior of a player with signal xn over the error
in her signal, xn ! y; is exactly the same as the posterior of a player with signal xn þ d
over the error in her signal, xn þ d! y: Since the signal error of the player’s
opponent is independent of y; the player’s posterior over the difference between her
signal error and that of her opponent is also the same if her signal is xn as if her
signal is xn þ d: But the difference between the two players’ signal errors is just the
difference between their signals: ðxi ! yÞ ! ðxj ! yÞ ¼ xi ! xj: Thus, a player’s
posterior over the difference between her signal and that of her opponent is the

same at xn as at xn þ d: Hence, since S̃ is an exact translation of
%
S; a player who

observes xn and thinks that her opponent will play according to S̃ expects the same
action distribution as a player who observes xn þ d and thinks that the opponent will
play according to

%
S: But assumption A3 implies that a player’s optimal action is

strictly increasing in her estimate of y; controlling for her opponent’s action
distribution. Hence, if d > 0; then an must be less than

%
Sðxn þ dÞ: Since in fact an is

at least
%
Sðxn þ dÞ; d must equal zero, and thus

%
S and %S coincide if the prior over y is

uniform.
The same property still holds with a general prior, in the limit as the signal errors

shrink to zero. When the signal errors are small, a player can be sure that the true
payoff parameter y is very close to her signal. Consequently, her prior over y is
approximately uniform for the small interval of values of y that are still possible
given her signal. (Recall that the model assumes a continuous prior over y and a
finite, very small support of the signal errors.) Thus, the above argument still holds in
the limit: d must shrink to zero (and thus

%
S and %S must coincide) as the signal errors

become small.

4. A partial characterization

Theorem 2 partially characterizes the surviving equilibria of the global game when
the noise is small. It states that in the limit, for all but a vanishing set of payoff
parameters y; players play arbitrarily close to some pure strategy Nash equilibrium
of the complete information game with payoffs uið&; y0Þ for some y0 that is arbitrarily
close to y: The intuition is that for small signal errors, players can precisely estimate

Fig. 4.

D.M. Frankel et al. / Journal of Economic Theory 108 (2003) 1–448

(From FMP 2003, p.8)
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Global Game Selections

▶ Let θ∗ be a point at which s∗ is continuous.

▶ s∗(θ∗) is a Nash equilibrium of the complete information
game (ui(·, θ∗))i∈I .

▶ Say that s∗(θ∗) is a global game selection in (ui(·, θ∗))i∈I .
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Noise Dependence

▶ In general, global game selection is noise dependent.

There are games in which different equilibria are selected
under different noise distributions fi.

▶ On the other hand, global game selection does not depend on
the prior distribution ϕ, and how (ui(·, θ))i∈I behaves for
θ ̸= θ∗ (as long as the assumptions are satisfied).

19 / 21



Noise Independence

▶ In certain games, global game selection is independent of the
noise distribution.

▶ Carlsson and van Damme (1993) showed that
in 2× 2 coordination games, a risk-dominant equilibrium is
a noise-independent global game selection.

▶ FMP show:

if the game has a “local potential” (LP) function and satisfies
own-action concavity, then the LP-maximizer is
a noise-independent global game selection.

▶ More generally,

if the game has a “monotone potential” (MP) function, then
the MP-maximizer is a noise-independent global game
selection.
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C. Basteck et al. / Journal of Economic Theory 148 (2013) 2620–2637 2629

Table 1
Noise (in)dependence in supermodular games.

Symmetric games

actions: 2 each 3 each 4 each

2 players ✓a ✓c ✕b

3 players ✓b ✕d

n players ✓b

Asymmetric games

actions: 2 each 2 by n 3 each

2 players ✓a ✔g ✕c

3 players ✕e n/a

n players ✕f n/a

✓ Always noise independent. ✕ Counterexample to noise independence exists. For empty cells
noise dependence follows from an example in smaller games.

a Carlsson and Van Damme [6].
b Frankel, Morris and Pauzner [10].
c Basteck and Daniëls [1].
d Basteck et al. [2].
e Carlsson [4].
f Corsetti et al. [7].
g This paper, see Section 5: Two-player games with 2 by n actions.

Fig. 2. Exploiting the GGS of restricted games.

Definition. Consider a supermodular complete information game Γ with joint action set A. For
action profiles a ! a′, we define [a, a′] := {ã ∈ A | a ! ã ! a′}. The restricted game Γ |[a, a′]
and elaboration E|[a, a′] are given by restricting the joint action set of Γ and its elaboration E
to [a, a′].

Fig. 2 now illustrates the idea. If certain action profiles a and a′ are played in equilibrium
strategy profiles of the restricted elaborations E|[0, a] and E|[a, a′], we can “patch” these pro-
files together to obtain a strategy profile s in the elaboration E, such that an upper best reply
iteration starting from s is weakly increasing. Hence the attained action profile a in E must be
weakly higher than a′. By Theorem 1, a′ provides a bound on the GGS. We may also do this
iteratively:

Lemma 2. Fix a supermodular game Γ and noise distribution f . An action profile an is
the unique global game selection, if there is a sequence 0 = a0 ! a1 ! · · · ! an ! an+1 !
· · ·! am = m such that

(i) aj is the unique global game selection in Γ |[aj−1, aj ] for all j ! n, and
(ii) aj−1 is the unique global game selection in Γ |[aj−1, aj ] for all j > n.

A noise independence result follows as an immediate corollary. If the restricted games in
the hypothesis of Lemma 2 are noise independent, we can use the same decomposition of the
game Γ , regardless of the noise distribution f , and Γ must be noise independent.

(From Basteck, Daniels, and Heinemann 2013, p.2629)
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