Global Games

Daisuke Oyama

Topics in Economic Theory

October 4, 2024

Papers

- Carlsson, H. and E. van Damme (1993). "Global Games and Equilibrium Selection," Econometrica 61, 989-1018.
- Frankel, D., S. Morris, and A. Pauzner (2003). "Equilibrium Selection in Global Games with Strategic Complementarities," Journal of Economic Theory 108, 1-44.

Setting (FMP)

Global game $G(\kappa)$

- Players: $I = \{1, \dots, |I|\}$
- Actions of player $i: A_i = \{0, 1, \dots, n_i\}$
- ▶ State: $\theta \in \mathbb{R} \sim$ continuous density ϕ , connected support
- ▶ Payoffs of player *i*: $u_i(a, \theta)$

$$\Delta u_i(a_i, a'_i, a_{-i}, \theta) = u_i(a_i, a_{-i}, \theta) - u_i(a'_i, a_{-i}, \theta)$$

Signal of player *i*: $x_i = \theta + \kappa \varepsilon_i$

- $(\varepsilon_1, \ldots, \varepsilon_{|I|}) \sim$ continuous joint density f, support contained in $[-\frac{1}{2}, \frac{1}{2}]^I$
- Independent of θ

Assumptions

1. Strategic complementarities:

For all
$$i \in I$$
,
if $a_i \ge a'_i$ and $a_{-i} \ge a'_{-i}$, then
 $\Delta u_i(a_i, a'_i, a_{-i}, \theta) \ge \Delta u_i(a_i, a'_i, a'_{-i}, \theta)$ for all θ .

2. Dominance regions:

There exist $\underline{\theta}$ and $\overline{\theta}$ such that for all $i \in I$,

- ▶ if $\theta \leq \underline{\theta}$, then $\Delta u_i(0, a_i, a_{-i}, \theta) > 0$ for all $a_i \neq 0$ and all a_{-i} ; and
- if $\theta \ge \overline{\theta}$, then $\Delta u_i(n_i, a_i, a_{-i}, \theta) > 0$ for all $a_i \ne n_i$ and all a_{-i} .

3. Strict state monotonicity:

There exists $K_0 > 0$ such that for all $i \in I$ and all a_{-i} , if $a_i \ge a'_i$ and $\theta \ge \theta'$, then

$$\Delta u_i(a_i, a'_i, a_{-i}, \theta) - \Delta u_i(a_i, a'_i, a_{-i}, \theta') \ge K_0(a_i - a'_i)(\theta - \theta').$$

4. Payoff continuity:

For all $i \in I$ and all a, $u_i(a, \theta)$ is continuous in θ .

Two Players, Two Actions (Carlsson and van Damme)

•
$$I = \{1, 2\}, A_1 = A_2 = \{0, 1\}$$

Payoffs:

• $p_i(\theta)$: continuous, strictly decreasing

► $p_i(\theta) > 1$ if $\theta \le \underline{\theta}$ (\Rightarrow action 0 is dominant) $p_i(\theta) < 0$ if $\theta \ge \overline{\theta}$ (\Rightarrow action 1 is dominant)

Risk-dominance in asymmetric 2×2 coordination games:

$$\begin{array}{l} \bullet \quad (1,1) \text{ risk-dominant at } \theta \\ \iff p_1(\theta)p_2(\theta) < (1-p_1(\theta))(1-p_2(\theta)) \\ \iff p_1(\theta) + p_2(\theta) < 1 \end{array}$$

 $(0,0) \text{ risk-dominant at } \theta \\ \iff p_1(\theta)p_2(\theta) > (1-p_1(\theta))(1-p_2(\theta)) \\ \iff p_1(\theta) + p_2(\theta) > 1$

• Let θ^* be the unique θ such that

 $p_1(\theta) + p_2(\theta) = 1$

- (1,1) risk-dominant at θ iff $\theta > \theta^*$
- ▶ (0,0) risk-dominant at θ iff $\theta < \theta^*$

Simplifying Assumptions

Uniform prior:

 ϕ uniform on some [a,b] (sufficiently large)

Private values:

Payoffs $u_i(a, x_i)$, depending on signal x_i (rather than θ)

Theorem 1 (Two-player, two-action case)

In the limit as $\kappa \to 0$, an essentially unique strategy profile survives iterative dominance; and it plays the risk-dominant equilibrium.

Posterior Beliefs

•
$$f^{\kappa}$$
: joint density of $(\kappa \varepsilon_1, \kappa \varepsilon)$
 $(f^{\kappa}(z_1, z_2) = \frac{1}{\kappa^2} f(\frac{z_1}{\kappa}, \frac{z_2}{\kappa}))$

• Conditional density (for x_1, x_2 away from the boundary):

$$f_1^{\kappa}(x_2|x_1) = \frac{\int f^{\kappa}(x_1 - \theta, x_2 - \theta)\phi(\theta)d\theta}{\iint f^{\kappa}(x_1 - \theta, x_2 - \theta)dx_2\phi(\theta)d\theta}$$
$$= \frac{\int f^{\kappa}(x_1 - \theta, x_2 - \theta)d\theta}{\iint f^{\kappa}(x_1 - \theta, x_2 - \theta)dx_2d\theta}$$
$$= \int f^{\kappa}(x_1 - \theta, x_2 - \theta)d\theta$$
$$f_2^{\kappa}(x_1|x_2) = \dots = \int f^{\kappa}(x_1 - \theta, x_2 - \theta)d\theta$$

$$\psi^{\kappa}(y) = \int f^{\kappa}(z+y,z)dz$$

$$f_{1}^{\kappa}(x_{2}|x_{1}) = f_{2}^{\kappa}(x_{1}|x_{2}) = \int f^{\kappa}(x_{1} - \theta, x_{2} - \theta)d\theta$$
$$= \int f^{\kappa}(z + x_{1} - x_{2}, z)dz$$
$$= \psi^{\kappa}(x_{1} - x_{2})$$

► Therefore,

$$P(x_2 \ge \xi_2 | x_1 = \xi_1) = \int_{x_2 \ge \xi_2} \psi^{\kappa}(\xi_1 - x_2) dx_2$$
$$= \int_{x_1 \le \xi_1} \psi^{\kappa}(x_1 - \xi_2) dx_1$$
$$= 1 - P(x_1 \ge \xi_1 | x_2 = \xi_2)$$

or

$$P(x_2 \ge \xi_2 | x_1 = \xi_1) + P(x_1 \ge \xi_1 | x_2 = \xi_2) = 1$$
 (*)

Iterative Dominance

By Dominance regions, player i observing a signal above some threshold ξ_i¹ play 1.

• Assuming that player j with signals above $\overline{\xi}_j^1$ play 1,

by Action monotonicity and State monotonicity, player i observing a signal above some threshold $\overline{\xi}_i^2$ play 1, where $\overline{\xi}_i^2 \leq \overline{\xi}_i^1$.

> ...

• We have
$$\overline{\xi}_i^1 \ge \overline{\xi}_i^2 \ge \cdots \searrow \overline{\xi}_i$$
.

► Similarly, from below we have $\underline{\xi}_i^1 \leq \underline{\xi}_i^2 \leq \cdots \nearrow \underline{\xi}_i$.

All these depend on κ ;

write the limits as $\overline{\xi}_i(\kappa)$ and $\underline{\xi}_i(\kappa)$.

By continuity, player 1 with signal ξ
₁(κ) when opponents play 1 above ξ
₂(κ) and 0 below ξ
₂(κ) must be indifferent between playing 1 and 0:

$$P(x_2 \ge \overline{\xi}_2(\kappa) | x_1 = \overline{\xi}_1(\kappa)) = p_1(\overline{\xi}_1(\kappa))$$

$$P(x_1 \ge \overline{\xi}_1(\kappa) | x_2 = \overline{\xi}_2(\kappa)) = p_2(\overline{\xi}_2(\kappa))$$

▶ In particular, it must be that $|\overline{\xi}_1(\kappa) - \overline{\xi}_2(\kappa)| < \kappa$.

By (*), we have

 $p_1(\overline{\xi}_1(\kappa)) + p_2(\overline{\xi}_2(\kappa)) = 1.$

- Let $(\overline{\xi}^*, \overline{\xi}^*)$ be any limit point of $(\overline{\xi}_1(\kappa), \overline{\xi}_2(\kappa))$ as $\kappa \to 0$.
- By continuity, we have

$$p_1(\overline{\xi}^*) + p_2(\overline{\xi}^*) = 1.$$

- Therefore, we must have $\overline{\xi}^* = \theta^*$.
- It follows that $\overline{\xi}_1(\kappa)$ and $\overline{\xi}_2(\kappa)$ both converge to θ^* as $\kappa \to 0$.
- ▶ Symmetrically, $\underline{\xi}_1(\kappa)$ and $\underline{\xi}_2(\kappa)$ both converge to θ^* as $\kappa \to 0$.
- Hence, in the limit as κ → 0, the game is dominance solvable, and the surviving strategy profile plays (1,1) if θ > θ* and (0,0) if θ < θ*.</p>

Many Players, Many Actions (FMP)

Limit Uniqueness

- Noise dependence of the surviving strategy profile
- Sufficient conditions for noise independence
 - Two-player two-action case
 - • •

Limit Uniqueness

Theorem 2

 $G(\kappa)$ has an essentially unique strategy profile surviving iterative dominance in the limit as $\kappa \to 0$.

More precisely, there exists an increasing pure strategy profile s^* such that if for each $\kappa > 0$, s^{κ} is a pure strategy profile surviving iterative dominance in $G(\kappa)$, then $\lim_{\kappa} s^{\kappa}(x) = s^*(x)$ for all x but except possibly for finitely many discontinuous points of s^* .

Fig. 4.

(From FMP 2003, p.8)

Global Game Selections

- Let θ^* be a point at which s^* is continuous.
- ▶ $s^*(\theta^*)$ is a Nash equilibrium of the complete information game $(u_i(\cdot, \theta^*))_{i \in I}$.
- Say that $s^*(\theta^*)$ is a global game selection in $(u_i(\cdot, \theta^*))_{i \in I}$.

Noise Dependence

▶ In general, global game selection is noise dependent.

There are games in which different equilibria are selected under different noise distributions f_i .

On the other hand, global game selection does not depend on the prior distribution φ, and how (u_i(·, θ))_{i∈I} behaves for θ ≠ θ* (as long as the assumptions are satisfied).

Noise Independence

- In certain games, global game selection is independent of the noise distribution.
- Carlsson and van Damme (1993) showed that in 2 × 2 coordination games, a risk-dominant equilibrium is a noise-independent global game selection.

FMP show:

if the game has a "local potential" (LP) function and satisfies own-action concavity, then the LP-maximizer is a noise-independent global game selection.

More generally,

if the game has a "monotone potential" (MP) function, then the MP-maximizer is a noise-independent global game selection.

Table 1

Noise (in)dependence in supermodular games.

Symmetric games				_	Asymmetric games			
actions:	2 each	3 each	4 each	_	actions:	2 each	2 by <i>n</i>	3 each
2 players	✓a	✓°	×b	_	2 players	✓ ^a	✓ ^g	×c
3 players	✓b	Xq			3 players	Xe	n/a	
n players	✓b				n players	×f	n/a	

✓ Always noise independent. × Counterexample to noise independence exists. For empty cells noise dependence follows from an example in smaller games.

^a Carlsson and Van Damme [6].

^b Frankel, Morris and Pauzner [10].

^c Basteck and Daniëls [1].

- ^d Basteck et al. [2].
- ^e Carlsson [4].
- f Corsetti et al. [7].
- ^g This paper, see Section 5: Two-player games with 2 by n actions.

(From Basteck, Daniels, and Heinemann 2013, p.2629)